Evaluating the Urban Canopy Scheme TERRA_URB in the COSMO Model for Selected European Cities
Abstract
:1. Introduction
2. Model Description
2.1. Surface-Layer Turbulence Scheme
2.1.1. Current Formulation
2.1.2. New Formulation
2.2. Land Surface Scheme TERRA
2.2.1. Current Formulation of Surface Temperature
2.2.2. New Formulation of Surface Temperature
2.3. TERRA_URB
2.4. External Parameters
3. Experiments
4. Results
4.1. Turin, Piedmont Domain, Italy
4.2. Naples, Campania Domain, Italy
4.3. Moscow Megacity, Russia
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
AHF | Anthropogenic Heat Flux |
BEM | Building Energy Model |
BEP | Building Environment Parameterization |
CLM | Climate Limited-area Modelling Community |
COSMO | Consortium for Small-scale Modelling |
DCEP | Double-Canyon Effect Parameterization |
EEA | European Environment Agency |
ICON | Icosahedral Nonhydrostatic Weather and Climate Model |
IFS | Integrated Forecast System |
ISA | Impervious Surface Area fraction |
LCZ | Local Climate Zones |
LST | Land Surface Temperature |
MB | Mean Bias |
NWP | Numerical Weather Prediction |
PBL | Planetary Boundary Layer |
RMSE | Root Mean Square Error |
SLUCM | Single Level Urban Canopy Model |
SUHI | Surface Urban Heat Island |
SURY | Semi-empirical URban canopY parameterization |
TEB | Town Energy Balance |
TKE | Turbulent Kinetic Energy |
TU | TERRA_URB |
UCM(s), | Urban Canopy Model(s) |
UHI | Urban Heat Island |
UTC | Coordinated Universal Time |
WRF | Weather Research and Forecasting |
Appendix A: The “urban double-counting effect”
Appendix B: Characteristics of the stations used for model validation
- urban, LCZ 2: “compact midrise”; dense mix of midrise buildings (3-9 stories). Few or no trees, land cover mostly paved.
- urban, LCZ 4: “open high-rise”; open arrangement of tall buildings to tens of stories. Abundance of pervious land cover (low plants, scattered trees).
- urban, LCZ 5: “open midrise”; open arrangement of midrise buildings (3-9 stories). Abundance of pervious land cover.
- urban LCZ 6: “open low-rise”; open arrangement of low-rise buildings (1-3 stories). Abundance of pervious land cover.
- urban, LCZ 8: “large low-rise”; open arrangement of large low-rise buildings (1-3 stories). Few or no trees, land cover mostly paved.
- rural, LCZ A: “dense trees”; heavily wooded landscape of deciduous and/or evergreen trees. Land cover mostly pervious (low plants). Zone function: natural forest, tree cultivation, urban park.
- rural, LCZ B: “scattered trees”; same as LCZ A, but lightly wooded.
- rural, LCZ D: “low plants”; featureless landscape of grass or herbaceous plants/crops. Few or no trees. Zone function: natural grassland, agriculture, urban park.
Station Name | Lat | Lon | Elevation, Actual (m a.s.l.) | Elevation, Model (m a.s.l.) | ISA (%) | LCZ | Classification |
---|---|---|---|---|---|---|---|
Reiss Romoli | 45.113 | 7.671 | 270 | 246 | 0.67 | 8 | urban |
Alenia | 45.081 | 7.612 | 320 | 279 | 0.62 | 8 | urban |
Consolata | 45.077 | 7.679 | 290 | 248 | 0.93 | 2 | urban |
Bauducchi | 44.961 | 7.710 | 226 | 225 | 0.09 | D | rural |
Santena-Banna | 44.946 | 7.783 | 238 | 234 | 0.14 | D | rural |
Carmagnola | 44.887 | 7.688 | 232 | 232 | 0.02 | D | rural |
Station Name | Lat | Lon | Elevation, Actual (m a.s.l.) | Elevation, Model (m a.s.l.) | ISA (%) | LCZ | Classification |
---|---|---|---|---|---|---|---|
Napoli | 40.9375 | 14.0759 | 13 | 61 | 0.80 | 8 | urban |
S. Marco Evangelista | 41.0225 | 14.3358 | 31 | 22 | 0.72 | 8 | urban |
Grazzanise | 41.0542 | 14.0913 | 6 | 9 | 0.02 | D | rural |
Rocca d’Evandro | 41.4244 | 13.8800 | 62 | 55 | 0.09 | D | rural |
Alife | 41.3391 | 14.3336 | 117 | 117 | 0.01 | D | rural |
Station Name | Lat | Lon | Elevation, Actual (m a.s.l.) | Elevation, Model (m a.s.l.) | ISA (%) | LCZ | Classification |
---|---|---|---|---|---|---|---|
Dolgoprudnyy | 55.93027 | 37.51944 | 193 | 195 | 0.64 | 5 | urban |
Strogino | 55.79694 | 37.39527 | 145 | 155 | 0.70 | 4 | urban |
VDNKh | 55.83138 | 37.62194 | 148 | 145 | 0.00 | A/B/5 | urban |
Balchug | 55.74555 | 37.63 | 123 | 129 | 0.88 | 2 | urban |
MSU | 55.70694 | 37.5222 | 192 | 183 | 0.49 | 5/B | urban |
Klin | 56.35 | 36.74972 | 165 | 171 | 0.08 | 6/8 | rural |
Novo-Iyerusalim | 55.90638 | 36.825 | 159 | 161 | 0.00 | 6 | rural |
Naro-Fominsk | 55.38722 | 36.70111 | 190 | 200 | 0.00 | D | rural |
Maloyaroslavets | 55.01694 | 36.48583 | 195 | 203 | 0.26 | 6 | rural |
Dmitrov | 56.3575 | 37.55722 | 178 | 180 | 0.43 | 6 | rural |
Serpukhov | 54.9225 | 37.46556 | 164 | 165 | 0.19 | D | rural |
Alexandrov | 56.4 | 38.75055 | 185 | 184 | 0.00 | 6 | rural |
Pavlovsky Posad | 55.7716 | 38.6925 | 134 | 133 | 0.22 | 6 | rural |
Kolomna | 55.1422 | 38.7325 | 112 | 111 | 0.03 | 6 | rural |
References
- Reba, M.; Seto, K.C. A Systematic Review and Assessment of Algorithms to Detect, Characterize, and Monitor Urban Land Change. Remote Sens. Environ. 2020, 242, 111739. [Google Scholar] [CrossRef]
- United Nations; Department of Economic and Social Affairs. Population Division World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2019; ISBN 978-92-1-148319-2. [Google Scholar]
- IPCC Reports. Available online: https://www.ipcc.ch/report/ar5/syr/ (accessed on 30 November 2020).
- Koffi, B.; Koffi, E. Heat waves across Europe by the end of the 21st century: Multiregional climate simulations. Clim. Res. 2008, 36, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Schatz, J.; Kucharik, C.J. Urban Climate Effects on Extreme Temperatures in Madison, Wisconsin, USA. Environ. Res. Lett. 2015, 10, 094024. [Google Scholar] [CrossRef] [Green Version]
- De Ridder, K.; Maiheu, B.; Lauwaet, D.; Daglis, I.A.; Keramitsoglou, I.; Kourtidis, K.; Manunta, P.; Paganini, M. Urban Heat Island Intensification during Hot Spells—The Case of Paris during the Summer of 2003. Urban Sci. 2017, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Konstantinov, P.I.; Varentsov, M.I.; Malinina, E.P. Modeling of Thermal Comfort Conditions inside the Urban Boundary Layer during Moscow’s 2010 Summer Heat Wave (Case-Study). Urban Clim. 2014, 10, 563–572. [Google Scholar] [CrossRef]
- Van Hove, L.W.A.; Jacobs, C.M.J.; Heusinkveld, B.G.; Elbers, J.A.; van Driel, B.L.; Holtslag, A.A.M. Temporal and Spatial Variability of Urban Heat Island and Thermal Comfort within the Rotterdam Agglomeration. Build. Environ. 2015, 83, 91–103. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.J.; Li, F.; et al. The Urban Heat Island and Its Impact on Heat Waves and Human Health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [Google Scholar] [CrossRef]
- Gabriel, K.M.A.; Endlicher, W.R. Urban and Rural Mortality Rates during Heat Waves in Berlin and Brandenburg, Germany. Environ. Pollut. 2011, 159, 2044–2050. [Google Scholar] [CrossRef]
- Lo, E.; Mitchell, D.; Bohnenstengel, S.; Collins, M.; Hawkins, E.; Hegerl, G.; Joshi, M.; Stott, P. U.K. Climate Projections: Summer Daytime and Nighttime Urban Heat Island Changes in England’s Major Cities. J. Clim. 2020, 33, 9015–9030. [Google Scholar] [CrossRef]
- Wouters, H.; De Ridder, K.; Poelmans, L.; Willems, P.; Brouwers, J.; Hosseinzadehtalaei, P.; Tabari, H.; Vanden Broucke, S.; van Lipzig, N.P.M.; Demuzere, M. Heat Stress Increase under Climate Change Twice as Large in Cities as in Rural Areas: A Study for a Densely Populated Midlatitude Maritime Region. Geophys. Res. Lett. 2017, 44, 8997–9007. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Oleson, K.; Bou-Zeid, E.; Krayenhoff, E.S.; Bray, A.; Zhu, Q.; Zheng, Z.; Chen, C.; Oppenheimer, M. Global Multi-Model Projections of Local Urban Climates. Nat. Clim. Chang. 2021. [Google Scholar] [CrossRef]
- Mote, T.L.; Lacke, M.C.; Shepherd, J.M. Radar Signatures of the Urban Effect on Precipitation Distribution: A Case Study for Atlanta, Georgia. Geophys. Res. Lett. 2007, 34, L20710. [Google Scholar] [CrossRef]
- Baik, J.-J.; Kim, Y.-H.; Kim, J.-J.; Han, J.-Y. Effects of Boundary-Layer Stability on Urban Heat Island-Induced Circulation. Theor. Appl. Climatol. 2007, 89, 73–81. [Google Scholar] [CrossRef]
- Li, Y.; Fowler, H.J.; Argüeso, D.; Blenkinsop, S.; Evans, J.P.; Lenderink, G.; Yan, X.; Guerreiro, S.B.; Lewis, E.; Li, X. Strong Intensification of Hourly Rainfall Extremes by Urbanization. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Doan, Q.-V.; Dipankar, A.; Simón-Moral, A.; Sanchez, C.; Venkatraman, P.; Roth, M.; Huang, X.-Y. Urban-Induced Modifications to the Diurnal Cycle of Rainfall over a Tropical City. Q. J. R. Meteorol. Soc. 2020. [Google Scholar] [CrossRef]
- Dou, J.; Wang, Y.; Bornstein, R.; Miao, S. Observed Spatial Characteristics of Beijing Urban Climate Impacts on Summer Thunderstorms. J. Appl. Meteorol. Climatol. 2015, 54, 12. [Google Scholar] [CrossRef]
- Dimitrova, R.; Danchovski, V.; Egova, E.; Vladimirov, E.; Sharma, A.; Gueorguiev, O.; Ivanov, D. Modeling the Impact of Urbanization on Local Meteorological Conditions in Sofia. Atmosphere 2019, 10, 366. [Google Scholar] [CrossRef] [Green Version]
- Martilli, A.; Roth, M.; Chow, W.T.L.; Demuzere, M.; Lipson, M.; Krayenhoff, E.S.; Sailor, D.; Nazarian, N.; Voogt, J.; Wouters, H.; et al. Summer Average Urban-Rural Surface Temperature Differences Do Not Indicate the Need for Urban Heat Reduction. Open Sci. Framew. 2020. [Google Scholar] [CrossRef]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives. Remote Sens. 2019, 11, 48. [Google Scholar] [CrossRef] [Green Version]
- Garuma, G.F. Review of Urban Surface Parameterizations for Numerical Climate Models. Urban Clim. 2018, 24, 830–851. [Google Scholar] [CrossRef]
- Chen, F.; Kusaka, H.; Bornstein, R.; Ching, J.; Grimmond, C.S.B.; Grossman-Clarke, S.; Loridan, T.; Manning, K.W.; Martilli, A.; Miao, S.; et al. The Integrated WRF/Urban Modelling System: Development, Evaluation, and Applications to Urban Environmental Problems. Int. J. Climatol. 2011, 31, 273–288. [Google Scholar] [CrossRef]
- Sharma, A.; Fernando, H.J.S.; Hamlet, A.F.; Hellmann, J.J.; Barlage, M.; Chen, F. Urban Meteorological Modeling Using WRF: A Sensitivity Study. Int. J. Climatol. 2017, 37, 1885–1900. [Google Scholar] [CrossRef]
- Baklanov, A.; Mestayer, P.; Clappier, A.; Zilitinkevich, S.; Joffre, S.; Mahura, A.; Nielsen, N.W. On the Parameterisation of the Urban Atmospheric Sublayer in Meteorological Models. Atmos. Chem. Phys. Discuss. 2005, 5, 12119–12176. [Google Scholar]
- Baklanov, A.; Mestayer, P.G.; Clappier, A.; Zilitinkevich, S.; Joffre, S.; Mahura, A.; Nielsen, N.W. Towards Improving the Simulation of Meteorological Fields in Urban Areas through Updated/Advanced Surface Fluxes Description. Atmos. Chem. Phys. 2008, 8, 543. [Google Scholar] [CrossRef] [Green Version]
- Bohnenstengel, S.I.; Evans, S.; Clark, P.A.; Belcher, S.E. Simulations of the London Urban Heat Island. Q. J. R. Meteorol. Soc. 2011, 137, 1625–1640. [Google Scholar] [CrossRef]
- Iriza, A.; Dumitrache, R.; Stefan, S. Numerical Modelling of the Bucharest Urban Heat Island with the WRF-Urban System. Romanian J. Phys. 2017, 62, 1–14. [Google Scholar]
- Vogel, J.; Afshari, A. Comparison of Urban Heat Island Intensity Estimation Methods Using Urbanized WRF in Berlin, Germany. Atmosphere 2020, 11, 1338. [Google Scholar] [CrossRef]
- Ribeiro, I.; Martilli, A.; Falls, M.; Zonato, A.; Villalba, G. Highly Resolved WRF-BEP/BEM Simulations over Barcelona Urban Area with LCZ. Atmos. Res. 2021, 248, 105220. [Google Scholar] [CrossRef]
- Doms, G.; Förstner, J.; Heise, E.; Herzog, H.-J.; Mironov, D.; Raschendorfer, M.; Reinhardt, T.; Ritter, B.; Schrodin, R.; Schulz, J.-P. A Description of the Nonhydrostatic Regional COSMO Model. Part II: Physical Parameterization; Deutscher Wetterdienst: Offenbach, Germany, 2011. [Google Scholar]
- Wouters, H.; Demuzere, M.; Blahak, U.; Fortuniak, K.; Maiheu, B.; Camps, J.; Tielemans, D.; Van Lipzig, N. The Efficient Urban Canopy Dependency Parametrization (SURY) v1.0 for Atmospheric Modelling: Description and Application with the COSMO-CLM Model for a Belgian Summer. Geosci. Model Dev. 2016, 9, 3027–3054. [Google Scholar] [CrossRef] [Green Version]
- Bohnenstengel, S.I.; Hamilton, I.; Davies, M.; Belcher, S.E. Impact of Anthropogenic Heat Emissions on London’s Temperatures. Q. J. R. Meteorol. Soc. 2014, 140, 687–698. [Google Scholar] [CrossRef]
- Varentsov, M.; Wouters, H.; Platonov, V.; Konstantinov, P. Megacity-Induced Mesoclimatic Effects in the Lower Atmosphere: A Modeling Study for Multiple Summers over Moscow, Russia. Atmosphere 2018, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Varentsov, M.I.; Grishchenko, M.Y.; Wouters, H. Simultaneous Assessment of the Summer Urban Heat Island in Moscow Megacity Based on in Situ Observations, Thermal Satellite Images and Mesoscale Modeling. Available online: https://ges.rgo.ru/jour/article/view/903 (accessed on 27 November 2020).
- Rivin, G.S.; Vil’fand, R.M.; Kiktev, D.B.; Rozinkina, I.A.; Tudriy, K.O.; Blinov, D.V.; Varentsov, M.I.; Samsonov, T.E.; Bundel’, A.Y.; Kirsanov, A.A.; et al. The System for Numerical Prediction of Weather Events (Including Severe Ones) for Moscow Megacity: The Prototype Development. Russ. Meteorol. Hydrol. 2019, 44, 729–738. [Google Scholar] [CrossRef]
- Rivin, G.S.; Rozinkina, I.A.; Vil’fand, R.M.; Kiktev, D.B.; Tudrii, K.O.; Blinov, D.V.; Varentsov, M.I.; Zakharchenko, D.I.; Samsonov, T.E.; Repina, I.A.; et al. Development of the High-Resolution Operational Systemfor Numerical Prediction of Weather and Severe Weather Events for The Moscow Region. Russ. Meteorol. Hydrol. 2020, 45, 455–465. [Google Scholar] [CrossRef]
- Wouters, H.; Demuzere, M.; Ridder, K.D.; van Lipzig, N.P.M. The Impact of Impervious Water-Storage Parametrization on Urban Climate Modelling. Urban Clim. 2015, 11, 24–50. [Google Scholar] [CrossRef]
- Demuzere, M.; Harshan, S.; Järvi, L.; Roth, M.; Grimmond, C.S.B.; Masson, V.; Oleson, K.W.; Velasco, E.; Wouters, H. Impact of Urban Canopy Models and External Parameters on the Modelled Urban Energy Balance in a Tropical City. Q. J. R. Meteorol. Soc. 2017, 143, 1581–1596. [Google Scholar] [CrossRef]
- Trusilova, K.; Schubert, S.; Wouters, H.; Früh, B.; Grossman-Clarke, S.; Demuzere, M.; Becker, P. The Urban Land Use in the COSMO-CLM Model: A Comparison of Three Parameterizations for Berlin. Meteorol. Z. 2016, 25, 231–244. [Google Scholar] [CrossRef]
- Brousse, O.; Georganos, S.; Demuzere, M.; Vanhuysse, S.; Wouters, H.; Wolff, E.; Linard, C.; van Lipzig, N.P.-M.; Dujardin, S. Using Local Climate Zones in Sub-Saharan Africa to Tackle Urban Health Issues. Urban Clim. 2019, 27, 227–242. [Google Scholar] [CrossRef] [Green Version]
- Brousse, O.; Wouters, H.; Demuzere, M.; Thiery, W.; de Walle, J.V.; van Lipzig, N.P.M. The Local Climate Impact of an African City during Clear-Sky Conditions—Implications of the Recent Urbanization in Kampala (Uganda). Int. J. Climatol. 2020, 40, 4586–4608. [Google Scholar] [CrossRef]
- Trusilova, K.; Früh, B.; Brienen, S.; Walter, A.; Masson, V.; Pigeon, G.; Becker, P. Implementation of an Urban Parameterization Scheme into the Regional Climate Model COSMO-CLM. J. Appl. Meteorol. Climatol. 2013, 52, 2296–2311. [Google Scholar] [CrossRef]
- Mussetti, G.; Brunner, D.; Allegrini, J.; Wicki, A.; Schubert, S.; Carmeliet, J. Simulating Urban Climate at Sub-Kilometre Scale for Representing the Intra-Urban Variability of Zurich, Switzerland. Int. J. Climatol. 2020, 40, 458–476. [Google Scholar] [CrossRef]
- Li, Y.; Schubert, S.; Kropp, J.P.; Rybski, D. On the Influence of Density and Morphology on the Urban Heat Island Intensity. Nat. Commun. 2020, 11, 2647. [Google Scholar] [CrossRef] [PubMed]
- Mussetti, G.; Brunner, D.; Henne, S.; Allegrini, J.; Krayenhoff, E.S.; Schubert, S.; Feigenwinter, C.; Vogt, R.; Wicki, A.; Carmeliet, J. COSMO-BEP-Tree v1.0: A Coupled Urban Climate Model with Explicit Representation of Street Trees. Geosci. Model Dev. 2020, 13, 1685–1710. [Google Scholar] [CrossRef] [Green Version]
- Schubert, S.; Grossman-Clarke, S.; Martilli, A. A Double-Canyon Radiation Scheme for Multi-Layer Urban Canopy Models. Bound. Layer Meteorol. 2012, 145, 439–468. [Google Scholar] [CrossRef]
- Bucchignani, E.; Mercogliano, P.; Garbero, V.; Milelli, M.; Varentsov, M.; Rozinkina, I.; Rivin, G.; Blinov, D.; Kirsanov, A.; Wouters, H.; et al. Analysis and Evaluation of TERRA_URB Scheme: PT AEVUS Final Report. Technical Report No. 40. 2019. Available online: http://www.cosmo-model.org/content/model/documentation/techReports/docs/techReport40.pdf (accessed on 11 January 2021). [CrossRef]
- Steppeler, J.; Doms, G.; Schättler, U.; Bitzer, H.W.; Gassmann, A.; Damrath, U.; Gregoric, G. Meso-Gamma Scale Forecasts Using the Nonhydrostatic Model LM. Meteorol. Atmos. Phys. 2003, 82, 75–96. [Google Scholar] [CrossRef]
- Cosmo Public Area. Available online: http://www.cosmo-model.org/ (accessed on 30 November 2020).
- Baldauf, M.; Seifert, A.; Förstner, J.; Majewski, D.; Raschendorfer, M.; Reinhardt, T. Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities. Mon. Weather Rev. 2011, 139, 3887–3905. [Google Scholar] [CrossRef]
- Buzzi, M. Challenges in Operational Numerical Weather Prediction at High Resolution in Complex Terrain. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2008. [Google Scholar]
- Paulson, C.A. The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer. J. Appl. Meteorol. 1970, 9, 857–861. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, H. A Performance Comparison between Nonlinear Similarity Functions in Bulk Parameterization for Very Stable Conditions. Environ. Fluid Mech. 2007, 7, 239–257. [Google Scholar] [CrossRef]
- Louis, J.-F. A Parametric Model of Vertical Eddy Fluxes in the Atmosphere. Bound. Layer Meteorol. 1979, 17, 187–202. [Google Scholar] [CrossRef]
- Wouters, H.; De Ridder, K.; van Lipzig, N.P.M. Comprehensive Parametrization of Surface-Layer Transfer Coefficients for Use in Atmospheric Numerical Models. Bound. Layer Meteorol. 2012, 145, 539–550. [Google Scholar] [CrossRef] [Green Version]
- Mellor, G.L.; Yamada, T. Development of a Turbulence Closure Model for Geophysical Fluid Problems. Rev. Geophys. 1982, 20, 851–875. [Google Scholar] [CrossRef] [Green Version]
- Schattler, U.; Doms, G.; Schraff, C. A Description of the Nonhydrostatic Regional COSMO-Model. Part VII: User’s Guide. Dtsch. Wetterd. 2018, 226. [Google Scholar] [CrossRef]
- Schulz, J.-P. Introducing Sub-Grid Scale Orographic Effects in the COSMO Model. COSMO Newsl. 2008, 9, 29–36. [Google Scholar]
- Cerenzia, I.; Tampieri, F.; Tesini, M.S. Diagnosis of Turbulence Schema in Stable Atmospheric Conditions and Sensitivity Tests. COSMO Newsl. 2014, 14, 28–36. [Google Scholar]
- Varentsov, M.I.; Samsonov, T.E.; Kislov, A.V.; Konstantinov, P.I. Simulations of Moscow agglomeration heat island within framework of regional climate model COSMO-CLM. Moscow Univ. Vestnik. Ser. 5 Geogr. 2017, 6, 25–37. [Google Scholar]
- Schulz, J.-P.; Vogel, G.; Becker, C.; Kothe, S.; Ahrens, B. Evaluation of the Ground Heat Flux Simulated by a Multi-Layer Land Surface Scheme Using High-Quality Observations at Grass Land and Bare Soil. Meteorol. Z. 2016, 11, 607–620. [Google Scholar] [CrossRef]
- Schulz, J.-P.; Vogel, G. Improving the Processes in the Land Surface Scheme TERRA: Bare Soil Evaporation and Skin Temperature. Atmosphere 2020, 11, 513. [Google Scholar] [CrossRef]
- Viterbo, P.; Beljaars, A.C.M. An Improved Land Surface Parameterization Scheme in the ECMWF Model and Its Validation. J. Clim. 1995, 8, 2716–2748. [Google Scholar] [CrossRef] [Green Version]
- Flanner, M.G. Integrating Anthropogenic Heat Flux with Global Climate Models. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Asensio, H.; Messmer, M.; Luthi, D.; Osterried, K.; Jucker, J. External Parameters for Numerical Weather Prediction and Climate Application EXTPAR v5_4, User and Implementation Guide. 2020. Available online: http://www.cosmo-model.org/content/support/software/ethz/EXTPAR_user_and_implementation_manual.pdf (accessed on 15 October 2020).
- Elvidge, C.D.; Tuttle, B.T.; Sutton, P.C.; Baugh, K.E.; Howard, A.T.; Milesi, C.; Bhaduri, B.; Nemani, R. Global Distribution and Density of Constructed Impervious Surfaces. Sensors 2007, 7, 1962–1979. [Google Scholar] [CrossRef]
- EEA Fast Track Service Precursor on Land Monitoring—Degree of Soil Sealing—European Environment Agency. Available online: https://www.eea.europa.eu/data-and-maps/data/eea-fast-track-service-precursor-on-land-monitoring-degree-of-soil-sealing (accessed on 30 November 2020).
- Bicheron, P.; Defourny, P.; Brockmann, C.; Schouten, L.; Vancutsem, C.; Huc, M.; Ranera, F. GLOBCOVER: Products Description and Validation Report; Technical Report; MEDIAS-France: Levallois-Perret, France, 2008. [Google Scholar]
- Kislov, A.V.; Varentsov, M.I.; Tarasova, L.L. Role of Spring Soil Moisture in the Formation of Large-Scale Droughts in the East European Plain in 2002 and 2010. Izv. Atmos. Ocean. Phys. 2015, 51, 405–411. [Google Scholar] [CrossRef]
- Canadell, J.; Jackson, R.B.; Ehleringer, J.B.; Mooney, H.A.; Sala, O.E.; Schulze, E.-D. Maximum Rooting Depth of Vegetation Types at the Global Scale. Oecologia 1996, 108, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Plant Root Systems and Natural Vegetation; Acta Phytogeographica Suecica; Persson, H.; Baĭtulin, I.O. (Eds.) Opulus Press AB: Uppsala, Sweden, 1996; ISBN 978-91-7210-481-5. [Google Scholar]
- Schenk, H.J.; Jackson, R.B. The Global Biogeography of Roots. Ecol. Monogr. 2002, 72, 311–328. [Google Scholar] [CrossRef]
- Akkermans, T.; Lauwaet, D.; Demuzere, M.; Vogel, G.; Nouvellon, Y.; Ardö, J.; Caquet, B.; Grandcourt, A.D.; Merbold, L.; Kutsch, W.; et al. Validation and Comparison of Two Soil-Vegetation-Atmosphere Transfer Models for Tropical Africa. J. Geophys. Res. Biogeosciences 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Varentsov, M.; Samsonov, T.E. Impact of Urban Canopy Parameters on a Megacity’s Modelled Thermal Environment. Atmosphere 2020, 11, 1349. [Google Scholar] [CrossRef]
- Stewart, I.D.; Kennedy, C.A. Metabolic Heat Production by Human and Animal Populations in Cities. Int. J. Biometeorol. 2017, 61, 1159–1171. [Google Scholar] [CrossRef] [PubMed]
- Samsonov, T.E.; Varentsov, M.I. Computation of City-Descriptive Parameters for High-Resolution Numerical Weather Prediction in Moscow Megacityin the Framework of the COSMO Model. Russ. Meteorol. Hydrol. 2020, 45, 515–521. [Google Scholar] [CrossRef]
- Lokoshchenko, M.A. Urban ‘Heat Island’ in Moscow. Urban Clim. 2014, 10, 550–562. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Demuzere, M.; Bechtel, B.; Middel, A.; Mills, G. Mapping Europe into Local Climate Zones. PLoS ONE 2019, 14, e0214474. [Google Scholar] [CrossRef] [Green Version]
- Demuzere, M.; Hankey, S.; Mills, G.; Zhang, W.; Lu, T.; Bechtel, B. Combining Expert and Crowd-Sourced Training Data to Map Urban Form and Functions for the Continental US. Sci. Data 2020, 7, 264. [Google Scholar] [CrossRef] [PubMed]
- Demuzere, M.; Bechtel, B.; Middel, A.; Mills, G. European LCZ Map. 2019. Available online: https://urlsand.esvalabs.com/?u=https%3A%2F%2Ffigshare.com%2Farticles%2Fdataset%2FEuropean_LCZ_map%2F13322450%2F1&e=78898b00&h=9a0f73a7&f=y&p=n (accessed on 11 January 2021).
Turin, Piedmont Domain, Italy | Naples, Campania Domain, Italy | Moscow Megacity, Russia | |
---|---|---|---|
Model setup | 2 nested domains: 3500 × 2750 km (5 km grid spacing) over Europe 350 × 350 km (1 km grid spacing) centered around Turin | 1 single domain centered around Naples: 260 × 138 km (1 km grid spacing) | 2 nested domains, centered around Moscow: 720 × 720 km (3 km grid spacing) 200 × 200 km (1 km grid spacing) |
Initial and boundary conditions | Taken from the Integrated Forecast System (IFS) analysis (9 km grid spacing) 1 | Same as Turin 1 | Taken from the ICON analysis (13 km grid spacing). |
Study period | 22–29 October 2017 | 8–14 August 2017 | 1–16 June 2019 |
Number of vertical levels | 65 | 60 | 50 |
Lowest model level | 10 m | 10 m | 10 m |
Namelist Switch | Configuration Explanation | REFold | REFnew | TUold1 | TUold2 | TUnew1 | TUnew2 |
---|---|---|---|---|---|---|---|
loldtur | Old (TRUE) or ICON-based (FALSE) turbulence scheme | TRUE | FALSE | TRUE | TRUE | FALSE | FALSE |
lterra_ urb | TU scheme switched on (TRUE) or off (FALSE) | FALSE | FALSE | TRUE | TRUE | TRUE | TRUE |
itype_ canopy | Current formulation (1) or skin temperature scheme (2) | 1 | 1 | 1 | 2 | 1 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garbero, V.; Milelli, M.; Bucchignani, E.; Mercogliano, P.; Varentsov, M.; Rozinkina, I.; Rivin, G.; Blinov, D.; Wouters, H.; Schulz, J.-P.; et al. Evaluating the Urban Canopy Scheme TERRA_URB in the COSMO Model for Selected European Cities. Atmosphere 2021, 12, 237. https://doi.org/10.3390/atmos12020237
Garbero V, Milelli M, Bucchignani E, Mercogliano P, Varentsov M, Rozinkina I, Rivin G, Blinov D, Wouters H, Schulz J-P, et al. Evaluating the Urban Canopy Scheme TERRA_URB in the COSMO Model for Selected European Cities. Atmosphere. 2021; 12(2):237. https://doi.org/10.3390/atmos12020237
Chicago/Turabian StyleGarbero, Valeria, Massimo Milelli, Edoardo Bucchignani, Paola Mercogliano, Mikhail Varentsov, Inna Rozinkina, Gdaliy Rivin, Denis Blinov, Hendrik Wouters, Jan-Peter Schulz, and et al. 2021. "Evaluating the Urban Canopy Scheme TERRA_URB in the COSMO Model for Selected European Cities" Atmosphere 12, no. 2: 237. https://doi.org/10.3390/atmos12020237
APA StyleGarbero, V., Milelli, M., Bucchignani, E., Mercogliano, P., Varentsov, M., Rozinkina, I., Rivin, G., Blinov, D., Wouters, H., Schulz, J. -P., Schättler, U., Bassani, F., Demuzere, M., & Repola, F. (2021). Evaluating the Urban Canopy Scheme TERRA_URB in the COSMO Model for Selected European Cities. Atmosphere, 12(2), 237. https://doi.org/10.3390/atmos12020237