Agricultural Drought Trends on the Iberian Peninsula: An Analysis Using Modeled and Reanalysis Soil Moisture Products
Abstract
:1. Introduction
2. Databases and Methodology
2.1. Soil Moisture Databases
2.1.1. ERA5-Land Soil Moisture
2.1.2. Lisflood Soil Moisture
2.2. Ancillary Data
2.2.1. Irrigation Mask
2.2.2. Climate Classification
2.2.3. Soil Data
2.2.4. Soil Moisture Climate Change Initiative (CCI) Dataset
2.3. Drought Indices
2.3.1. Soil Moisture Anomalies
2.3.2. Soil Water Deficit Index
2.4. Trend Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilhite, D. Drought as a natural hazard: Concepts and definitions. In Droughts: Global Assessment; Wilhite, D.A., Ed.; Routledge: London, UK, 2000; pp. 3–18. [Google Scholar]
- Adikari, Y.; Yoshitani, J. Global Trends in Water-Related Disasters: An Insight for Policymakers; UNESCO: Paris, France, 2009; 24p. [Google Scholar]
- Li, X.; Wang, X.; Babovic, V. Analysis of variability and trends of precipitation extremes in Singapore during 1980–2013. Int. J. Climatol. 2018, 38, 125–141. [Google Scholar] [CrossRef]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Haile, G.G.; Tang, Q.; Hosseini-Moghari, S.M.; Liu, X.; Gebremicael, T.G.; Leng, G.; Kebede, A.; Xu, X.; Yun, X. Projected impacts of climate change on drought patterns over East Africa. Earths Future 2020, 8, e2020EF001502. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Panu, U.S.; Sharma, T.C. Challenges in drought research: Some perspectives and future directions. Hydrol. Sci. J. 2002, 47, S19–S30. [Google Scholar] [CrossRef] [Green Version]
- Boyer, J.S. Plant productivity and environment. Science 1982, 218, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Enenkel, M.; See, L.; Bonifacio, R.; Boken, V.; Chaney, N.; Vinck, P.; You, L.; Dutra, E.; Anderson, M. Drought and food security—Improving decision-support via new technologies and innovative collaboration. Glob. Food Secur. 2015, 4, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Kelley, C.P.; Mohtadi, S.; Cane, M.A.; Seager, R.; Kushnir, Y. Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proc. Natl. Acad. Sci. USA 2015, 112, 3241–3246. [Google Scholar] [CrossRef] [Green Version]
- Low, A.J.; Frederix, K.; McCracken, S.; Manyau, S.; Gummerson, E.; Radin, E.; DaviaI, S.; Longwe, H.; Ahmed, N.; Parekh, B.; et al. Association between severe drought and HIV prevention and care behaviors in Lesotho: A population-based survey 2016–2017. PLoS Med. 2019, 16, e1002727. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Tramblay, Y.; Koutroulis, A.; Samaniego, L.; Vicente-Serrano, A.M.; Volaire, F.; Boone, A.; Le Page, M.; Llasat, M.C.; Albergel, C.; Burak, S.; et al. Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth Sci. Rev. 2020, 210, 103348. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Páscoa, P.; Gouveia, C.M.; Russo, A.; Trigo, R.M. Drought Trends in the Iberian Peninsula over the Last 112 Years. Adv. Meteorol. 2017, 4653126. [Google Scholar]
- Divrak, B.B.; Ayas, C.; Iş, G. Drought trends and impacts on agricultural production and natural resources in the context of climate change. In Economics of Drought and Drought Preparedness in a Climate Change Context; López-Francos, A., Ed.; Série A. Séminaires Méditerranéens; Options Méditerranéennes: Turkey, Istanbul, 2010; Volume 95, pp. 49–55. [Google Scholar]
- Jiménez-Donaire, M.P.; Giráldez, J.V.; Vanwalleghem, T. Impact of Climate Change on Agricultural Droughts in Spain. Water 2020, 12, 3214. [Google Scholar] [CrossRef]
- Peña-Gallardo, M.; Vicente-Serrano, S.M.; Domínguez-Castro, F.; Beguería, S. The impact of drought on the productivity of two rainfed crops in Spain. Nat. Hazards Earth Syst. Sci. 2019, 19, 1215–1234. [Google Scholar] [CrossRef] [Green Version]
- Bouras, E.H.; Jarlan, l.; Er-Raki, S.; Albergel, C.; Richard, B.; Balaghi, R.; Khabba, S. Linkages between Rainfed Cereal Production and Agricultural Drought through Remote Sensing Indices and a Land Data Assimilation System: A Case Study in Morocco. Remote Sens. 2020, 12, 4018. [Google Scholar] [CrossRef]
- Eurostat. Farms and Farmland in the European Union-Statistics; Eurostat: Luxembourg, 2019. [Google Scholar]
- Fernández-Nogueira, D.; Corbelle-Rico, E. Land Use Changes in Iberian Peninsula 1990–2012. Land 2018, 7, 99. [Google Scholar] [CrossRef] [Green Version]
- Bradford, J.B.; Schlaepfer, D.R.; Lauenroth, W.K.; Yackulic, C.B.; Duniway, M.; Hall, S.; Jia, G.; Jamiyansharav, K.; Munson, S.M.; Wilson, S.D.; et al. Future soil moisture and temperature extremes imply expanding suitability for rainfed agriculture in temperate drylands. Sci. Rep. 2017, 7, 12923. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Torres, G.M.; Lollato, P.R.; Ochsner, T.E. Comparison of drought probability assessments based on atmospheric water deficit and soil water deficit. Agron. J. 2013, 105, 428–436. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A. A soil water based index as a suitable agricultural drought indicator. J. Hydrol. 2015, 522, 265–273. [Google Scholar] [CrossRef]
- Mladenova, I.E.; Bolten, J.D.; Crow, W.; Sazib, N.; Reynolds, C. Agricultural drought monitoring via the assimilation of SMAP soil moisture retrievals into a Global Soil Water Balance Model. J. Big Data 2020, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Sawada, Y. Quantifying drought propagation from soil moisture to vegetation dynamics using a newly developed ecohydrological land reanalysis. Remote Sens. 2018, 10, 1197. [Google Scholar] [CrossRef] [Green Version]
- Pablos, M.; Martínez-Fernández, J.; Sánchez, N.; González-Zamora, A. Temporal and Spatial Comparison of Agricultural Drought Indices from Moderate Resolution Satellite Soil Moisture Data over Northwest Spain. Remote Sens. 2017, 9, 1168. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A.; Herrero-Jiménez, C.M. Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS derived Soil Water Deficit Index. Remote Sens. Environ. 2016, 177, 277–286. [Google Scholar] [CrossRef]
- Sánchez, N.; González-Zamora, A.; Piles, M.; Martínez-Fernández, J. A New Soil Moisture Agricultural Drought Index (SMADI) Integrating MODIS and SMOS Products: A Case of Study over the Iberian Peninsula. Remote Sens. 2016, 8, 287. [Google Scholar] [CrossRef] [Green Version]
- Baik, J.; Zohaib, M.; Kim, U.; Aadil, M.; Choi, M. Agricultural drought assessment based on multiple soil moisture products. J. Arid Environ. 2019, 167, 43–55. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Gruber, A.; de Jeu, R.A.M.; Wagner, W.; Stacke, T.; Loew, A.; Albergel, C.; Brocca, L.; Chung, D.; Parinussa, R.M.; et al. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ. 2015, 162, 380–395. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.; Simmons, A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, P. The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Naz, B.S.; Kollet, S.; Hendricks Franssen, H.J.; Montzka, C.; Kurtz, W. A 3 km spatially and temporally consistent European daily soil moisture reanalysis from 2000 to 2015. Sci. Data 2020, 7, 111. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Fernández, J.; Almendra-Martín, L.; de Luis, M.; González-Zamora, A.; Herrero-Jiménez, C.M. Tracking tree growth through satellite soil moisture monitoring: A case study of Pinus halepensis in Spain. Remote Sens. Environ. 2019, 235, 111422. [Google Scholar] [CrossRef]
- González-Zamora, A.; Sánchez, N.; Pablos, M.; Martínez-Fernández, J. CCI soil moisture assessment with SMOS soil moisture and in situ data under different environmental conditions and spatial scales in Spain. Remote Sens. Environ. 2019, 225, 469–482. [Google Scholar] [CrossRef]
- Balsamo, G.; Albergel, C.; Beljaars, A.; Boussetta, S.; Brun, E.; Cloke, H.; Dee, D.; Dutra, E.; Muñoz-Sabater, J.; Pappenberger, F.; et al. ERA-Interim/Land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci. 2015, 19, 389–407. [Google Scholar] [CrossRef] [Green Version]
- Cammalleri, C.; Micale, F.; Vogt, J. Recent temporal trend in modelled soil water deficit over Europe driven by meteorological observations. Int. J. Climatol. 2016, 36, 4903–4912. [Google Scholar] [CrossRef] [Green Version]
- Albergel, C.; Dorigo, W.; Reichle, R.H.; Balsamo, G.; De Rosnay, P.; Muñoz-Sabater, J.; Isaksen, L.; de Jeu, R.; Wagner, W. Skill and global trend analysis of soil moisture from reanalyses and microwave remote sensing. J. Hydrometeorol. 2013, 14, 1259–1277. [Google Scholar] [CrossRef]
- Beck, H.E.; Pan, M.; Miralles, D.G.; Reichle, R.H.; Dorigo, W.A.; Hahn, S.; Sheffield, J.; Karthikeyan, L.; Balsamo, G.; Parinussa, R.M.; et al. Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors. Hydrol. Earth Syst. Sci. 2021, 25, 17–40. [Google Scholar] [CrossRef]
- de Roo, A.P.J.; Wesseling, C.G.; van Deursen, W.P.A. Physically based river basin modelling within a GIS: The LISFLOOD model. Hydrol. Process 2000, 14, 1981–1992. [Google Scholar] [CrossRef]
- Thielen, J.; Bartholmes, J.; Ramos, M.H.; de Roo, A. The European Flood Alert System-Part 1: Concept and development. Hydrol. Earth Syst. Sci. 2009, 13, 125–140. [Google Scholar] [CrossRef] [Green Version]
- van der Knijff, J.M.; Younis, J.; de Roo, A.P.J. LISFLOOD: A GIS-based distributed model for river basin scale water balance and flood simulation. Int. J. Geogr. Inf. Sci. 2008, 24, 189–212. [Google Scholar] [CrossRef]
- Siebert, S.; Döll, P.; Hoogeveen, J.; Faures, J.M.; Frenken, K.; Feick, S. Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci. 2005, 9, 535–547. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kottek, M.; Rubel, F.; Grieser, J.; Beck, C.; Rudolf, B. World map of the Koeppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Rubel, F.; Brugger, K.; Haslinger, K.; Auer, I. The climate of the European Alps: Shift of very high resolution Köppen-Geiger climate zones 1800–2100. Meteorol. Z. 2017, 26, 115–125. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Batjes, N.H.; Ribeiro, E.; van Oostrum, Ad. Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019). Earth Syst. Sci. Data 2020, 12, 299–320. [Google Scholar] [CrossRef] [Green Version]
- Saxton, K.E.; Rawls, W.J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Elagib, N.A.; Elhag, M.M. Major climate indicators of ongoing drought in Sudan. J. Hydrol. 2011, 409, 612–625. [Google Scholar] [CrossRef]
- Sepulcre-Canto, G.; Horion, S.M.A.F.; Singleton, A.; Carrao, H.; Vogt, J. Development of a Combined Drought Indicator to detect agricultural drought in Europe. Nat. Hazards Earth Syst. Sci. 2012, 12, 3519–3531. [Google Scholar] [CrossRef] [Green Version]
- Steinemann, A.; Iacobellis, S.F.; Cayan, D.R. Developing and evaluating drought indicators for decision-making. J. Hydrometeorol. 2015, 16, 1793–1803. [Google Scholar] [CrossRef]
- Purcell, L.C.; Sinclair, T.R.; McNew, R.W. Drought avoidance assessment for summer annual crops using long-term weather data. Agron. J. 2003, 95, 1566–1576. [Google Scholar] [CrossRef]
- Király, A.; Bartos, I.; Jánosi, I.M. Correlation properties of daily temperature anomalies over land. Tellus A Dyn. Meteorol. Oceanogr. 2006, 58, 593–600. [Google Scholar] [CrossRef]
- Wongsai, N.; Wongsai, S.; Huete, A.R. Annual seasonality extraction using the cubic spline function and decadal trend in temporal daytime MODIS LST data. Remote Sens. 2017, 9, 1254. [Google Scholar] [CrossRef] [Green Version]
- Savage, M.J.; Ritchie, J.T.; Bland, W.L.; Dugas, W.A. Lower limit of soil water availability. Agron. J. 1996, 88, 644–651. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1948. [Google Scholar]
- Qiu, J.; Gao, Q.; Wang, S.; Su, Z. Comparison of temporal trends from multiple soil moisture data sets and precipitation: The implication of irrigation on regional soil moisture trend. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 17–27. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Yue, S.; Hashino, M. Temperature trends in Japan: 1900–1996. Theor. Appl. Climatol. 2003, 75, 15–27. [Google Scholar] [CrossRef]
- Zhang, X.; Vincent, L.A.; Hogg, W.D.; Niitsoo, A. Temperature and precipitation trends in Canada during the 20th century. Atmos. Ocean 2000, 38, 395–429. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Şen, Z. Hydrological trend analysis with innovative and over-whitening procedures. Hydrol. Sci. J. 2017, 62, 294–305. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R. A nonparametric trend test for seasonal data with serial dependence. Water Resour. Res. 1984, 20, 727–732. [Google Scholar] [CrossRef] [Green Version]
- Yue, S.; Wang, C.Y. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resour. Res. 2002, 38, 1068. [Google Scholar] [CrossRef]
- Cammalleri, C.; Vogt, J.V.; Bisselink, B.; de Roo, A. Comparing soil moisture anomalies from multiple independent sources over different regions across the globe. Hydrol. Earth Syst. Sci. 2017, 21, 6329–6343. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Li, M.; Wu, P.; Ma, Z. A comprehensive evaluation of soil moisture and soil temperature from third-generation atmospheric and land reanalysis data sets. Int. J. Climatol. 2020, 40, 5744–5766. [Google Scholar] [CrossRef]
- Ceballos, A.; Martínez-Fernández, J.; Santos, F.; Alonso, P. Soil water behaviour of sandy soils under semiarid conditions in the Duero Basin (Spain). J. Arid Environ. 2002, 51, 501–519. [Google Scholar] [CrossRef]
- Ceballos, A.; Martínez-Fernández, J.; Luengo-Ugidos, M.A. Analysis of rainfall trends and dry periods on a pluviometric gradient representative of Mediterranean climate in the Duero Basin, Spain. J. Arid Environ. 2004, 58, 214–232. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; González-Zamora, A.; Almendra-Martín, L. Soil moisture memory and soil properties: An analysis with the stored precipitation fraction. J. Hydrol. 2020. In Press. [Google Scholar] [CrossRef]
- Serrano-Notivoli, R.; Beguería, S.; Saz, M.A.; de Luis, M. Recent trends reveal decreasing intensity of daily precipitation in Spain. Int. J. Climatol. 2018, 38, 4211–4224. [Google Scholar] [CrossRef]
- Kutilek, M.; Nielsen, D.R. Soil Hydrology; Catena, Ed.; Schweizerbart Science Publishers: Germany, Stuttgart, 1994. [Google Scholar]
- Kirkham, M.B. Field capacity, wilting point, available water, and the non-limiting water range. In Principles of Soil and Plant Water Relations; Academic Press: Cambridge, MA, USA, 2005; pp. 101–115. [Google Scholar]
- Saxton, K.E.; Rawls, W.J.; Romberger, J.S.; Papendick, R.I. Estimating generalized soil water characteristics from texture. Trans. ASAE 1986, 50, 1031–1035. [Google Scholar]
- González-Hidalgo, J.C.; Brunetti, M.; de Luis, M. Precipitation trends in Spanish hydrological divisions, 1946–2005. Clim. Res. 2010, 43, 215–228. [Google Scholar] [CrossRef]
- Paulo, A.A.; Rosa, R.D.; Pereira, L.S. Climate trends and behaviour of drought indices based on precipitation and evapotranspiration in Portugal. Nat. Hazards Earth Syst. Sci. 2012, 12, 1481–1491. [Google Scholar] [CrossRef]
- Andreo, B.; Jiménez, P.; Durán, J.J.; Carrasco, F.; Vadillo, I.; Mangin, A. Climatic and hydrological variations during the last 117–166 years in the south of the Iberian Peninsula, from spectral and correlation analyses and continuous wavelet analyses. J. Hydrol. 2006, 324, 24–39. [Google Scholar] [CrossRef]
- Peña-Angulo, D.; Vicente-Serrano, S.M.; Domínguez-Castro, F.; Murphy, C.; Reig, F.; Tramblay, Y.; Trigo, R.M.; Luna, M.Y.; Turco, M.; Noguera, I.; et al. Long-term precipitation in Southwestern Europe reveals no clear trend attributable to anthropogenic forcing. Environ. Res. Lett. 2020, 15, 094070. [Google Scholar] [CrossRef]
- Rodrigo, F.S.; Trigo, R.M. Trends in daily rainfall in the Iberian Peninsula from 1951 to 2002. Int. J. Climatol. 2007, 27, 513–529. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Vicente-Serrano, S.M.; Morán-Tejeda, E.; Zabalza, J.; Lorenzo-Lacruz, J.; García-Ruiz, J.M. Impact of climate evolution and land use changes on water yield in the Ebro basin. Hydrol. Earth Syst. Sci. 2011, 15, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Espírito Santo, F.; de Lima, M.I.; Ramos, A.M.; Trigo, R.M. Trends in seasonal surface air temperature in mainland Portugal, since 1941. Int. J. Climatol. 2014, 34, 1814–1837. [Google Scholar] [CrossRef]
- Del Río, S.; Herrero, L.; Pinto-Gomes, C.; Penas, A. Spatial analysis of mean temperature trends in Spain over the period 1961–2006. Glob. Planet. Change 2011, 78, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Azorín-Molina, C.; Sánchez-Lorenzo, A.; Revuelto, J.; López-Moreno, J.; González-Hidalgo, J.C.; Morán-Tejeda, E.; Espejo, F. Reference evapotranspiration variability and trends in Spain, 1961–2011. Glob. Planet. Change 2014, 121, 26–40. [Google Scholar] [CrossRef] [Green Version]
- Paniagua, L.L.; García-Martín, A.; Moral, F.J.; Rebollo, F.J. Aridity in the Iberian Peninsula (1960–2017): Distribution, tendencies, and changes. Theor. Appl. Climatol. 2019, 138, 811–830. [Google Scholar] [CrossRef]
- Lasanta, T.; Arnáez, J.; Pascual, N.; Ruiz-Flaño, P.; Errea, M.P.; Lana-Renault, N. Space–time process and drivers of land abandonment in Europe. Catena 2017, 149, 810–823. [Google Scholar] [CrossRef]
- van der Zanden, E.H.; Carvalho-Ribeiro, S.M.; Verburg, P.H. Abandonment landscapes: User attitudes, alternative futures and land management in Castro Laboreiro, Portugal. Reg. Environ. Change 2018, 18, 1509–1520. [Google Scholar] [CrossRef] [Green Version]
- Verburg, P.H.; Schulp, C.J.E.; Witte, N.; Veldkamp, A. Downscaling of land use change scenarios to assess the dynamics of European landscapes. Agric. Ecosyst. Environ. 2006, 114, 39–56. [Google Scholar] [CrossRef]
- Perpiñá Castillo, C.; Coll Aliaga, E.; Lavalle, C.; Martínez Llario, J.C. An Assessment and Spatial Modelling of Agricultural Land Abandonment in Spain (2015–2030). Sustainability 2020, 12, 560. [Google Scholar] [CrossRef] [Green Version]
- Forest Europe; UNECE; FAO. State of Europe’s Forests 2011 Status & Trends in Sustainable Forest Management in Europe. Roman Michalak (Coord.). In Ministerial Conference on the Protection of Forests in Europe; FOREST EUROPE Liaison Unit Oslo: Aas, Norway, 2011; p. 337. [Google Scholar]
- Green, J.C.; Reid, I.; Calder, I.R.; Nisbet, T.R. Four-year comparison of water contents beneath a grass ley and a deciduous oak wood overlaying Triassic sandstone in lowland England. J. Hydrol. 2006, 329, 16–25. [Google Scholar] [CrossRef]
- Roberts, J. and Rosier, P. The impact of broadleaved woodland on water resources in lowland UK: III. The results from Black Wood ad Bridgets Farm compared with those from other woodland and grassland sites. Hydrol. Earth Sys. Sci. 2005, 9, 614–620. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Fernández, J.; Hernández-Santana, V.; Morán-Tejeda, C.; Casado-Ledesma, S. Soil water availability under different Mediterranean land uses in Spain. In Soil and Water Conservation under Changing Land Use; Martínez-Casasnovas, J.A., Pla Sentís, I., Ramos Martín, M.C., Balasch Solanes, J.C., Eds.; Edicions de la Universitat de Lleida: Lleida, Spain, 2006; pp. 93–96. [Google Scholar]
- Capa-Morocho, M.; Inés, A.V.N.; Baethgen, W.E.; Rodríguez-Fonseca, B.; Han, E.; Ruiz-Ramos, M. Crop yield outlooks in the Iberian Peninsula: Connecting seasonal climate forecasts with crop simulation models. Agric. Syst. 2016, 149, 75–87. [Google Scholar] [CrossRef]
- Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.; Best, N.; et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3239–3244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perret, S.R.; Payen, S. Irrigation and the environmental tragedy: Pathways towards sustainability in agricultural water use. Irrig. Drain. 2020, 69, 263–271. [Google Scholar] [CrossRef]
- Incrocci, L.; Thompson, R.B.; Fernandez-Fernandez, M.D.; de Pascale, S.; Pardossi, A.; Stanghellini, C.; Rouphael, Y.; Gallardo, M. Irrigation management of European greenhouse vegetable crops. Agric. Water Manag. 2020, 242, 106393. [Google Scholar] [CrossRef]
Index. | Trend | Daily | Weekly | ||
---|---|---|---|---|---|
ERA5 | LF | ERA5 | LF | ||
Anomalies | S | 83.2 | 88.1 | 60.3 | 70.8 |
P | 3.2 | 23.2 | 0.6 | 20.4 | |
N | 96.8 | 76.8 | 99.4 | 79.6 | |
SWDI | S | 81.5 | 84.8 | 48.9 | 59.3 |
P | 1.5 | 15.8 | 0.2 | 12.6 | |
N | 98.5 | 84.2 | 99.8 | 87.4 |
Climate Zone | Trend | Anomalies | SWDI | ||||||
---|---|---|---|---|---|---|---|---|---|
Daily | Weekly | Daily | Weekly | ||||||
ERA5 | LF | ERA5 | LF | ERA5 | LF | ERA5 | LF | ||
Arid | S | 78.1 | 84.4 | 52.1 | 64.1 | 80.7 | 82.1 | 45.0 | 54.3 |
P | 4.5 | 24.0 | 1.8 | 21.9 | 1.9 | 15.6 | 0.5 | 13.8 | |
N | 95.5 | 76.0 | 98.2 | 78.1 | 98.1 | 84.4 | 99.5 | 86.2 | |
Temperate | S | 84.8 | 89.6 | 63.1 | 73.5 | 77.5 | 83.1 | 46.4 | 58.9 |
P | 2.7 | 23.7 | 0.2 | 20.8 | 1.3 | 16.5 | 0.0 | 12.9 | |
N | 97.3 | 76.3 | 99.8 | 79.2 | 98.7 | 83.5 | 100.0 | 87.1 | |
Cold | S | 97.3 | 94.7 | 90.2 | 85.5 | 97.3 | 88.5 | 89.6 | 75.5 |
P | 0.0 | 13.1 | 0.0 | 8.6 | 0.0 | 7.8 | 0.0 | 2.1 | |
N | 100.0 | 86.9 | 100.0 | 91.4 | 100.0 | 92.2 | 100.0 | 97.9 |
Daily | Weekly | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ERA5 | LF | ERA5 | LF | |||||||||
S | P | N | S | P | N | S | P | N | S | P | N | |
J | 45.2 | 13.9 | 86.1 | 79.6 | 11.2 | 88.8 | 10.8 | 2.3 | 97.7 | 44.8 | 8.1 | 91.9 |
F | 52.5 | 69.7 | 30.3 | 71.1 | 42.2 | 57.8 | 19.4 | 75.5 | 24.5 | 35.5 | 46.8 | 53.2 |
M | 81.3 | 90.3 | 9.7 | 69.9 | 75.2 | 24.8 | 24.0 | 86.4 | 13.6 | 26.7 | 70.4 | 29.6 |
A | 34.4 | 31.7 | 68.3 | 75.6 | 84.4 | 15.6 | 6.3 | 5.2 | 94.8 | 44.0 | 91.3 | 8.7 |
M | 78.0 | 1.8 | 98.2 | 67.0 | 26.8 | 73.2 | 27.1 | 0.0 | 100.0 | 32.6 | 18.9 | 81.1 |
J | 90.6 | 1.2 | 98.8 | 74.2 | 24.9 | 75.1 | 54.5 | 0.0 | 100.0 | 34.8 | 28.7 | 71.3 |
J | 89.4 | 1.0 | 99.0 | 76.8 | 29.9 | 70.1 | 66.5 | 0.2 | 99.8 | 41.1 | 27.6 | 72.4 |
A | 93.2 | 0.3 | 99.7 | 81.3 | 18.9 | 81.1 | 75.3 | 0.1 | 99.9 | 50.1 | 13.3 | 86.7 |
S | 84.3 | 13.5 | 86.5 | 81.7 | 12.9 | 87.1 | 34.3 | 21.9 | 78.1 | 53.8 | 7.8 | 92.2 |
O | 71.3 | 27.4 | 72.6 | 90.7 | 1.6 | 98.4 | 30.7 | 1.8 | 98.2 | 65.4 | 0.6 | 99.4 |
N | 39.0 | 43.8 | 56.2 | 67.3 | 18.7 | 81.3 | 6.8 | 34.9 | 65.1 | 26.4 | 11.8 | 88.2 |
D | 56.9 | 8.0 | 92.0 | 78.3 | 9.1 | 90.9 | 11.1 | 3.7 | 96.3 | 45.2 | 6.1 | 93.9 |
Daily | Weekly | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ERA5 | LF | ERA5 | LF | |||||||||
S | P | N | S | P | N | S | P | N | S | P | N | |
J | 43.3 | 11.7 | 88.3 | 80.3 | 10.8 | 89.2 | 9.9 | 0.6 | 99.4 | 45.5 | 7.6 | 92.4 |
F | 52.7 | 69.0 | 31.0 | 71.4 | 41.1 | 58.9 | 19.4 | 74.4 | 25.6 | 35.6 | 45.6 | 54.4 |
M | 81.1 | 89.9 | 10.1 | 67.9 | 73.0 | 27.0 | 23.0 | 85.5 | 14.5 | 25.2 | 66.4 | 33.6 |
A | 33.0 | 26.4 | 73.6 | 73.6 | 82.7 | 17.3 | 6.4 | 3.3 | 96.7 | 41.9 | 90.1 | 9.9 |
M | 80.5 | 0.5 | 99.5 | 67.9 | 22.6 | 77.4 | 25.8 | 0.0 | 100.0 | 32.9 | 16.8 | 83.2 |
J | 93.6 | 0.7 | 99.3 | 75.4 | 19.8 | 80.2 | 59.9 | 0.0 | 100.0 | 36.2 | 20.5 | 79.5 |
J | 94.2 | 0.4 | 99.6 | 77.5 | 23.9 | 76.1 | 74.7 | 0.1 | 99.9 | 41.7 | 18.8 | 81.2 |
A | 93.7 | 0.3 | 99.7 | 81.7 | 19.1 | 80.9 | 77.6 | 0.1 | 99.9 | 49.6 | 14.1 | 85.9 |
S | 81.3 | 11.1 | 88.9 | 78.8 | 19.7 | 80.3 | 30.6 | 20.4 | 79.6 | 46.6 | 15.1 | 84.9 |
O | 68.4 | 32.0 | 68.0 | 87.9 | 2.3 | 97.7 | 25.5 | 3.5 | 96.5 | 52.7 | 1.1 | 98.9 |
N | 36.1 | 45.5 | 54.5 | 65.9 | 21.2 | 78.8 | 6.2 | 38.8 | 61.2 | 23.1 | 15.7 | 84.3 |
D | 53.3 | 7.9 | 92.1 | 77.2 | 9.4 | 90.6 | 10.5 | 3.8 | 96.2 | 44.7 | 6.6 | 93.4 |
Anomalies | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sand (%) | Daily | Weekly | ||||||||||
ERA | LF | ERA | LF | |||||||||
S | P | N | S | P | N | S | P | N | S | P | N | |
<10 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | 100.0 |
10–20 | 73.5 | 11.1 | 88.9 | 87.1 | 16.5 | 83.5 | 46.9 | 4.3 | 95.7 | 69.8 | 17.7 | 82.3 |
20–30 | 88.4 | 3.5 | 96.5 | 83.4 | 24.6 | 75.4 | 69.0 | 1.5 | 98.5 | 64.8 | 22.3 | 77.7 |
30–40 | 85.6 | 3.1 | 96.9 | 89.4 | 21.5 | 78.5 | 69.9 | 0.7 | 99.3 | 74.0 | 18.2 | 81.8 |
40–50 | 76.1 | 2.9 | 97.1 | 87.9 | 30.9 | 69.1 | 49.8 | 0.4 | 99.6 | 70.4 | 28.7 | 71.3 |
>50 | 86.4 | 2.0 | 98.0 | 89.2 | 12.7 | 87.3 | 54.6 | 0.0 | 100.0 | 70.1 | 9.5 | 90.5 |
SWDI | ||||||||||||
<10 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | 100.0 |
10–20 | 75.5 | 2.7 | 97.3 | 86.6 | 13.7 | 86.3 | 42.9 | 0.0 | 100.0 | 63.4 | 17.2 | 82.8 |
20–30 | 82.1 | 2.1 | 97.9 | 80.5 | 18.3 | 81.7 | 62.2 | 0.8 | 99.2 | 54.4 | 17.2 | 82.8 |
30–40 | 83.5 | 1.5 | 98.5 | 85.5 | 14.8 | 85.2 | 62.2 | 0.1 | 99.9 | 64.3 | 11.1 | 88.9 |
40–50 | 74.1 | 1.1 | 98.9 | 81.7 | 21.5 | 78.5 | 36.3 | 0.0 | 100.0 | 53.6 | 17.2 | 82.8 |
>50 | 78.3 | 0.9 | 99.1 | 85.1 | 6.5 | 93.5 | 28.3 | 0.0 | 100.0 | 58.3 | 5.2 | 94.8 |
Anomalies | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Clay (%) | Daily | Weekly | ||||||||||
ERA | LF | ERA | LF | |||||||||
S | P | N | S | P | N | S | P | N | S | P | N | |
<10 | 100.0 | 0.0 | 100.0 | 100.0 | 0.0 | 100.0 | 55.6 | 0.0 | 100.0 | 94.7 | 0.0 | 100.0 |
10–20 | 85.1 | 1.0 | 99.0 | 90.7 | 13.6 | 86.4 | 58.4 | 0.0 | 100.0 | 75.6 | 11.3 | 88.7 |
20–30 | 83.1 | 3.2 | 96.8 | 88.1 | 25.9 | 74.1 | 63.7 | 0.6 | 99.4 | 70.6 | 23.1 | 76.9 |
30–40 | 78.3 | 5.9 | 94.1 | 83.0 | 30.2 | 69.8 | 48.2 | 3.0 | 97.0 | 63.3 | 27.7 | 72.3 |
40–50 | 57.1 | 12.5 | 87.5 | 80.6 | 88.0 | 12.0 | 35.7 | 0.0 | 100.0 | 48.4 | 100.0 | 0.0 |
SWDI | ||||||||||||
<10 | 100.0 | 0.0 | 100.0 | 100.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 94.7 | 0.0 | 100.0 |
10–20 | 79.8 | 0.4 | 99.6 | 87.5 | 7.9 | 92.1 | 34.0 | 0.0 | 100.0 | 62.8 | 6.2 | 93.8 |
20–30 | 80.5 | 1.3 | 98.7 | 83.0 | 17.9 | 82.1 | 54.6 | 0.1 | 99.9 | 58.3 | 13.7 | 86.3 |
30–40 | 72.4 | 3.7 | 96.3 | 78.5 | 22.1 | 77.9 | 41.3 | 0.9 | 99.1 | 51.6 | 22.0 | 78.0 |
40–50 | 50.0 | 14.3 | 85.7 | 71.0 | 77.3 | 22.7 | 7.1 | 0.0 | 100.0 | 35.5 | 100.0 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almendra-Martín, L.; Martínez-Fernández, J.; González-Zamora, Á.; Benito-Verdugo, P.; Herrero-Jiménez, C.M. Agricultural Drought Trends on the Iberian Peninsula: An Analysis Using Modeled and Reanalysis Soil Moisture Products. Atmosphere 2021, 12, 236. https://doi.org/10.3390/atmos12020236
Almendra-Martín L, Martínez-Fernández J, González-Zamora Á, Benito-Verdugo P, Herrero-Jiménez CM. Agricultural Drought Trends on the Iberian Peninsula: An Analysis Using Modeled and Reanalysis Soil Moisture Products. Atmosphere. 2021; 12(2):236. https://doi.org/10.3390/atmos12020236
Chicago/Turabian StyleAlmendra-Martín, Laura, José Martínez-Fernández, Ángel González-Zamora, Pilar Benito-Verdugo, and Carlos Miguel Herrero-Jiménez. 2021. "Agricultural Drought Trends on the Iberian Peninsula: An Analysis Using Modeled and Reanalysis Soil Moisture Products" Atmosphere 12, no. 2: 236. https://doi.org/10.3390/atmos12020236
APA StyleAlmendra-Martín, L., Martínez-Fernández, J., González-Zamora, Á., Benito-Verdugo, P., & Herrero-Jiménez, C. M. (2021). Agricultural Drought Trends on the Iberian Peninsula: An Analysis Using Modeled and Reanalysis Soil Moisture Products. Atmosphere, 12(2), 236. https://doi.org/10.3390/atmos12020236