Investigation of Aeolian Dust Deposition Rates in Different Climate Zones of Southwestern Iran
Abstract
:1. Introduction
- Dust in suspension (DIS), which is identified as widespread dust particles in suspension that influence visibility, limiting it to approximately 10 km.
- Blowing dust (BD) is defined as a raised dust particle that reduces visibility to 1–10 km.
- Dust storms (DS) occur when a large amount of dust particles is raised, reducing visibility to between 200 m and 1000 m.
- Severe dust storms (SDS) represent large quantities of lifting dust particles that reduce visibility to less than 200 m.
2. Material and Methods
2.1. Study Area
2.2. Climates of Study Area
2.3. Methods and Data
2.3.1. Ground Survey Setup
2.3.2. MERRA-II Application
3. Results
3.1. Meteorological Setting
3.2. Ground Dust Deposition Rate
3.3. MERRA-II Deposition Rate
4. Discussion
4.1. Mapping Seasonal GDR and Role of Climate
4.2. Typical Climate Terms Versus GDR
4.3. Significance of Relationship between MERRA-II and GDR
5. Conclusions and Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Swap, R.; Garstang, M.; Greco, S.; Talbot, R.; Kållberg, P. Saharan dust in the Amazon Basin. Tellus B 1992, 44, 133–149. [Google Scholar] [CrossRef] [Green Version]
- Falkowski, P.G.; Barber, R.T.; Smetacek, V. Biogeochemical Controls and Feedbacks on Ocean Primary Production. Science 1998, 281, 200–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jickells, T.D.; Anderson, K.; Andersen, K.K.; Baker, A.R.; Bergametti, G.; Brooks, N.; Cao, J.J.; Boyd, P.W.; Duce, R.A.; Hunter, K.A.; et al. Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate. Science 2005, 308, 67–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, R. ARAL SEA:Coming to Grips With the Aral Sea’s Grim Legacy. Science 1999, 284, 30–33. [Google Scholar] [CrossRef]
- Wiggs, G.F.S.; O’Hara, S.L.; Wegerdt, J.; Van Der Meer, J.; Small, I.; Hubbard, R.B. The dynamics and characteristics of aeolian dust in dryland Central Asia: Possible impacts on human exposure and respiratory health in the Aral Sea basin. Geogr. J. 2003, 169, 142–157. [Google Scholar] [CrossRef]
- Groll, M.; Opp, C.; Aslanov, I. Spatial and temporal distribution of the dust deposition in Central Asia—results from a long term monitoring program. Aeolian Res. 2013, 9, 49–62. [Google Scholar] [CrossRef]
- Opp, C.; Groll, M.; Aslanov, I.; Lotz, T.; Vereshagina, N. Aeolian dust deposition in the southern Aral Sea region (Uzbekistan): Ground-based monitoring results from the LUCA project. Quat. Int. 2017, 429, 86–99. [Google Scholar] [CrossRef]
- Goudie, A. Dust storms: Recent developments. J. Environ. Manag. 2009, 90, 89–94. [Google Scholar] [CrossRef]
- Huang, X.; Oberhänsli, H.; Von Suchodoletz, H.; Sorrel, P. Dust deposition in the Aral Sea: Implications for changes in atmospheric circulation in central Asia during the past 2000 years. Quat. Sci. Rev. 2011, 30, 3661–3674. [Google Scholar] [CrossRef]
- Dawson, J.P.; Bloomer, B.J.; Winner, D.A.; Weaver, C.P. Understanding the Meteorological Drivers of U.S. Particulate Matter Concentrations in a Changing Climate. Bull. Am. Meteorol. Soc. 2014, 95, 521–532. [Google Scholar] [CrossRef]
- Feng, J.; Liao, H.; Li, J. The impact of monthly variation of the Pacific–North America (PNA) teleconnection pattern on wintertime surface-layer aerosol concentrations in the United States. Atmos. Chem. Phys. Discuss. 2016, 16, 4927–4943. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Feng, Q.; Tao, W.; Yanwu, Z.; Jianhua, S. Physicochemistry and mineralogy of storm dust and dust sediment in northern China. Adv. Atmospheric Sci. 2004, 21, 775–783. [Google Scholar] [CrossRef]
- Peng, J.; Hu, M.; Guo, S.; Du, Z.; Zheng, J.; Shang, D.; Zamora, M.L.; Zeng, L.; Shao, M.; Wu, Y.-S.; et al. Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments. Proc. Natl. Acad. Sci. USA 2016, 113, 4266–4271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haywood, J.; Allan, R.P.; Culverwell, I.; Slingo, T.; Milton, S.; Edwards, J.; Clerbaux, N. Can desert dust explain the outgoing longwave radiation anomaly over the Sahara during July 2003? J. Geophys. Res. Space Phys. 2005, 110. [Google Scholar] [CrossRef]
- Fiedler, S.; Kaplan, M.L.; Knippertz, P. The importance of Harmattan surges for the emission of North African dust aerosol. Geophys. Res. Lett. 2015, 42, 9495–9504. [Google Scholar] [CrossRef] [Green Version]
- Prospero, J.; Uematsu, M.; Savoie, D. Mineral aerosol transport to the Pacific Ocean, Chemical Oceanography. Chem. Oceanogr. 1989, 10, 188–218. [Google Scholar]
- Goudie, A.; Middleton, N. Saharan dust storms: Nature and consequences. Earth-Sci. Rev. 2001, 56, 179–204. [Google Scholar] [CrossRef]
- Shinn, E.A.; Griffin, D.W.; Seba, D.B. Atmospheric transport of mold spores in clouds of desert dust. Arch. Environ. Health Int. J. 2003, 58, 498–504. [Google Scholar]
- Allen, R.J.; Landuyt, W.; Rumbold, S.T. An increase in aerosol burden and radiative effects in a warmer world. Nat. Clim. Chang. 2016, 6, 269–274. [Google Scholar] [CrossRef]
- Tegen, I.; Fung, I. Modeling of mineral dust in the atmosphere: Sources, transport, and surface modification. J. Geophys. Res. 1994, 99, 22897–22914. [Google Scholar] [CrossRef]
- Griffin, D.W.; Kubilay, N.; Kocak, M.; Gray, M.A.; Borden, T.C.; Shinn, E.A. Airborne desert dust and aeromicrobiology over the Turkish Mediterranean coastline. Atmos. Environ. 2007, 41, 4050–4062. [Google Scholar] [CrossRef]
- Nicoll, K.; Hahnenberger, M.; Goldstein, H.L. ‘Dust in the wind’ from source-to-sink: Analysis of the 14–15 April 2015 storm in Utah. Aeolian Res. 2020, 46, 100532. [Google Scholar] [CrossRef]
- Rezazadeh, M.; Irannejad, P.; Shao, Y. Climatology of the Middle East dust events. Aeolian Res. 2013, 10, 103–109. [Google Scholar] [CrossRef]
- Shao, Y.; Dong, C. A review on East Asian dust storm climate, modelling and monitoring. Glob. Planet. Chang. 2006, 52, 1–22. [Google Scholar] [CrossRef]
- Maleki, H.; Sorooshian, A.; Goudarzi, G.; Nikfal, A.; Baneshi, M.M. Temporal profile of PM 10 and associated health effects in one of the most polluted cities of the world (Ahvaz, Iran) between 2009 and 2014. Aeolian Res. 2016, 22, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Goudie, A.S. Desert dust and human health disorders. Environ. Int. 2014, 63, 101–113. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Feng, J.-L. Aeolian dust contribution to the formation of alpine soils at Amdo (Northern Tibetan Plateau). Geoderma 2015, 259, 104–115. [Google Scholar] [CrossRef]
- Varga, G.; Cserháti, C.; Kovács, J.; Szalai, Z. Saharan dust deposition in the Carpathian Basin and its possible effects on interglacial soil formation. Aeolian Res. 2016, 22, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Yaalon, D.; Ganor, E. Rates of aeolian dust accretion in the Mediterranean and desert fringe environments of Israel. In Proceedings of the 9th International Sedimentological Congress, Nice, France, 1 January–30 November 1974; Volume 2, pp. 169–174. [Google Scholar]
- Khalaf, F.; Al-Hashash, M. Aeolian sedimentation in the north-western part of the Arabian Gulf. J. Arid. Environ. 1983, 6, 319–332. [Google Scholar] [CrossRef]
- Modaihsh, A. Characteristics and composition of the falling dust sediments on Riyadh city, Saudi Arabia. J. Arid. Environ. 1997, 36, 211–223. [Google Scholar] [CrossRef]
- Derbyshire, E.; Meng, X.; Kemp, R.A. Provenance, transport and characteristics of modern aeolian dust in western Gansu Province, China, and interpretation of the Quaternary loess record. J. Arid. Environ. 1998, 39, 497–516. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, P.; Lianyou, L.; Tang, Y.; Cao, H.; Hu, X.; Guo, L.L.; Lue, Y.; Qu, Z. Ambient TSP concentration and dustfall in major cities of China: Spatial distribution and temporal variability. Atmos. Environ. 2010, 44, 1641–1648. [Google Scholar] [CrossRef]
- Hojati, S.; Khademi, H.; Cano, A.F.; Landi, A. Characteristics of dust deposited along a transect between central Iran and the Zagros Mountains. Catena 2012, 88, 27–36. [Google Scholar] [CrossRef]
- Shao, Y.; Wyrwoll, K.-H.; Chappell, A.; Huang, J.; Lin, Z.; McTainsh, G.H.; Mikami, M.; Tanaka, T.Y.; Wang, X.; Yoon, S. Dust cycle: An emerging core theme in Earth system science. Aeolian Res. 2011, 2, 181–204. [Google Scholar] [CrossRef]
- Wu, J.; Xu, Y.; Fu, C.; Zhang, R.; Dai, M.; Zhu, Y. Comparison of simulating mineral dust aerosols in east asia by two emission schemes. China Particuology 2006, 4, 293–299. [Google Scholar] [CrossRef]
- Stefanski, R.; Sivakumar, M.V.K. Impacts of sand and dust storms on agriculture and potential agricultural applications of a SDSWS. IOP Conf. Ser. Earth Environ. Sci. 2009, 7, 012016. [Google Scholar] [CrossRef]
- Kazem, A.A.; Chaichan, M.T.; Kazem, H.A. Dust effect on photovoltaic utilization in Iraq: Review article. Renew. Sustain. Energy Rev. 2014, 37, 734–749. [Google Scholar] [CrossRef]
- Foroushani, M.A.; Opp, C.; Groll, M. Chemical Characterization of Aeolian Dust Deposition in Southern and Western Iran. Asian J. Geogr. Res. 2019, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Holleman, H. De-naturalizing ecological disaster: Colonialism, racism and the global Dust Bowl of the 1930s. J. Peasant. Stud. 2016, 44, 234–260. [Google Scholar] [CrossRef]
- Miri, A.; Ahmadi, H.; Ekhtesasi, M.R.; Panjehkeh, N.; Ghanbari, A. Environmental and socio-economic impacts of dust storms in Sistan Region, Iran. Int. J. Environ. Stud. 2009, 66, 343–355. [Google Scholar] [CrossRef]
- Norouzi, S.; Khademi, H.; Ayoubi, S.; Cano, A.F.; Acosta, J.A. Seasonal and spatial variations in dust deposition rate and concentrations of dust-borne heavy metals, a case study from Isfahan, central Iran. Atmospheric Pollut. Res. 2017, 8, 686–699. [Google Scholar] [CrossRef]
- Dadashi-Roudbari, A.; Ahmadi, M.; Shakiba, A. Seasonal Study of Dust Deposition and Fine Particles (PM 2.5) in Iran Using MERRA-2 Data. Iran. J. Geophys. 2020, 13, 43–59. [Google Scholar]
- Statoids. Administrative Divisions of Countries. Montly Clearing House, Sep. 2016. Available online: http://www.statoids.com/uir.html (accessed on 4 February 2021).
- Kriticos, D.J.; Webber, B.L.; Leriche, A.; Ota, N.; Macadam, I.; Bathols, J.; Scott, J.K. CliMond: Global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol. 2011, 3, 53–64. [Google Scholar] [CrossRef]
- Shen, H.; Abuduwaili, J.; Samat, A.; Ma, L. A review on the research of modern aeolian dust in Central Asia. Arab. J. Geosci. 2016, 9. [Google Scholar] [CrossRef]
- Taghavi, F.; Owlad, E.; A Ackerman, S. Enhancement and identification of dust events in the south-west region of Iran using satellite observations. J. Earth Syst. Sci. 2017, 126, 28. [Google Scholar] [CrossRef]
- Foroushani, M.A.; Opp, C.; Groll, M. Spatial and temporal gradients in the rate of dust deposition and aerosol optical thickness in southwestern Iran. J. Arid. Land 2021, 13, 1–22. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. 2007, 4, 439–473. [Google Scholar]
- Tachikawa, T.; Kaku, M.; Iwasaki, A.; Gesch, D.B.; Oimoen, M.J.; Zhang, Z.; Danielson, J.J.; Krieger, T.; Curtis, B.; Haase, J.; et al. ASTER Global Digital Elevation Model Version 2—Summary of Validation Results. Report. 2011. Available online: http://pubs.er.usgs.gov/publication/70005960 (accessed on 4 February 2021).
- Buchard, V.; Randles, C.A.; Da Silva, A.M.; Darmenov, A.; Colarco, P.R.; Govindaraju, R.; Ferrare, R.; Hair, J.; Beyersdorf, A.J.; Ziemba, L.D.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies. J. Clim. 2017, 30, 6851–6872. [Google Scholar] [CrossRef]
- Foroushani, M.A.; Opp, C.; Groll, M.; Nikfal, A. Evaluation of WRF-Chem Predictions for Dust Deposition in Southwestern Iran. Atmosphere 2020, 11, 757. [Google Scholar] [CrossRef]
- IHS under License with ASTM: Standard Terminology Relating to Sampling and Analysis of Atmospheres. IHS under License with ASTM. 2010. Available online: https://astm.biz/SNEWS/APRIL_2004/ashhar_apr04.html (accessed on 4 February 2021).
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.-K.; et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Koster, R.D.; McCarty, W.; Coy, L.; Gelaro, R.; Huang, A.; Merkova, D.; Smith, E.B.; Sienkiewicz, M.; Wargan, K. MERRA-2 Input Observations: Summary and Assessment; Goddard Space Flight Center: Greenbelt, MD, USA, 2016. [Google Scholar]
- Gao, W.; Wesely, M.L.; Cook, D.R.; Hart, R.L. Air-surface exchange of H2O, CO2, and O3 at a tallgrass prairie in relation to remotely sensed vegetation indices. J. Geophys. Res. Space Phys. 1992, 97, 18663. [Google Scholar] [CrossRef]
- Pease, P.P.; Tchakerian, V.P.; Tindale, N.W. Aerosols over the Arabian Sea: Geochemistry and source areas for aeolian desert dust. J. Arid. Environ. 1998, 39, 477–496. [Google Scholar] [CrossRef]
- Acker, J.G.; Leptoukh, G. Online Analysis Enhances Use of NASA Earth Science Data. Earth Data. Available online: https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on 4 February 2021).
- Lenssen, N.J.L.; Schmidt, G.A.; Hansen, J.E.; Menne, M.J.; Persin, A.; Ruedy, R.; Zyss, D. Improvements in the GISTEMP Uncertainty Model. J. Geophys. Res. Atmos. 2019, 124, 6307–6326. [Google Scholar] [CrossRef]
- Lee, D.; Min, S.-K.; Fischer, E.M.; Shiogama, H.; Bethke, I.; Lierhammer, L.; Scinocca, J.F. Impacts of half a degree additional warming on the Asian summer monsoon rainfall characteristics. Environ. Res. Lett. 2018, 13, 044033. [Google Scholar] [CrossRef] [Green Version]
- Orth, R.; Zscheischler, J.; Seneviratne, S.I. Record dry summer in 2015 challenges precipitation projections in Central Europe. Sci. Rep. 2016, 6, 28334. [Google Scholar] [CrossRef] [PubMed]
- World Meteorological Organization. The Global Climate in 2015–2019. 2019. Available online: https://library.wmo.int/doc_num.php?explnum_id=9936 (accessed on 3 February 2021).
- Jouzel, J.; Waelbroeck, C.; Malaizé, B.; Bender, M.; Petit, J.R.; Stievenard, M.; Barkov, N.I.; Barnola, J.M.; King, T.; Kotlyakov, V.M.; et al. Climatic interpretation of the recently extended Vostok ice records. Clim. Dyn. 1996, 12, 513–521. [Google Scholar] [CrossRef]
- Rashki, A.; Arjmand, M.; Kaskaoutis, D. Assessment of dust activity and dust-plume pathways over Jazmurian Basin, southeast Iran. Aeolian Res. 2017, 24, 145–160. [Google Scholar] [CrossRef]
- Abbasi, H.; Opp, C.; Groll, M.; Rohipour, H.; Khosroshahi, M.; Khaksarian, F.; Gohardoust, A. Spatial and temporal variation of the aeolian sediment transport in the ephemeral Baringak Lake (Sistan Plain, Iran) using field measurements and geostatistical analyses. Z. Geomorphol. 2018, 61, 315–326. [Google Scholar] [CrossRef]
- Choobari, O.A.; Zawar-Reza, P.; Sturman, A. Low level jet intensification by mineral dust aerosols. Ann. Geophys. 2013, 31, 625–632. [Google Scholar] [CrossRef]
- Ta, W.; Xiao, H.; Qu, J.; Xiao, Z.; Yang, G.; Wang, T.; Zhang, X. Measurements of dust deposition in Gansu Province, China, 1986–2000. Geomorphology 2004, 57, 41–51. [Google Scholar] [CrossRef]
- Alharbi, M. Characteristics and composition of the falling dust in urban environment. Int. J. Environ. Sci. Technol. 2013, 12, 641–652. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-Y.; Lee, Y.-H.; Kuo, C.-Y.; Chen, W.-C.; Sheng, Y.-F.; Su, C.-J. Impact of river-dust events on air quality of western Taiwan during winter monsoon: Observed evidence and model simulation. Atmos. Environ. 2018, 192, 160–172. [Google Scholar] [CrossRef]
- Oduber, F.; Calvo, A.; Blanco-Alegre, C.; Castro, A.; Nunes, T.; Alves, C.; Sorribas, M.; Fernández-González, D.; Vega-Maray, A.; Valencia-Barrera, R.; et al. Unusual winter Saharan dust intrusions at Northwest Spain: Air quality, radiative and health impacts. Sci. Total Environ. 2019, 669, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Reheis, M.C.; Kihl, R. Dust deposition in southern Nevada and California, 1984–1989: Relations to climate, source area, and source lithology. J. Geophys. Res. Space Phys. 1995, 100, 8893–8918. [Google Scholar] [CrossRef]
- Alizadeh-Choobari, O.; Najafi, M. Extreme weather events in Iran under a changing climate. Clim. Dyn. 2018, 50, 249–260. [Google Scholar] [CrossRef]
- Shao, Y.; Lu, H. A simple expression for wind erosion threshold friction velocity. J. Geophys. Res. Space Phys. 2000, 105, 22437–22443. [Google Scholar] [CrossRef]
- Lucke, B.; Roskin, J.; Vanselow, K.A.; Bruins, H.J.; Abu-Jaber, N.; Deckers, K.; Lindauer, S.; Porat, N.; Reimer, P.J.; Bäumler, R.; et al. Character, Rates, and Environmental Significance of Holocene Dust Accumulation in Archaeological Hilltop Ruins in the Southern Levant. Geosciences 2019, 9, 190. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Wang, J. A climatology of Northeast Asian dust events. Meteorol. Z. 2003, 12, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Gillette, D.A. Threshold friction velocities for dust production for agricultural soils. J. Geophys. Res. Atmos. 1988, 93, 12645–12662. [Google Scholar] [CrossRef] [Green Version]
- Belnap, J.; Phillips, S.L.; Herrick, J.E.; Johansen, J.R. Wind erodibility of soils at Fort Irwin, California (Mojave Desert), USA, before and after trampling disturbance: Implications for land management. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2006, 32, 75–84. [Google Scholar] [CrossRef]
- Webb, N.P.; Galloza, M.S.; Zobeck, T.M.; Herrick, J.E. Threshold wind velocity dynamics as a driver of aeolian sediment mass flux. Aeolian Res. 2016, 20, 45–58. [Google Scholar] [CrossRef]
- Gillette, D.A.; Adams, J.; Endo, A.; Smith, D.; Kihl, R. Threshold velocities for input of soil particles into the air by desert soils. J. Geophys. Res. Oceans 1980, 85, 5621–5630. [Google Scholar] [CrossRef]
- Hoffmann, C.; Funk, R.; Wieland, R.; Li, Y.; Sommer, M. Effects of grazing and topography on dust flux and deposition in the Xilingele grassland, Inner Mongolia. J. Arid. Environ. 2008, 72, 792–807. [Google Scholar] [CrossRef]
- Song, Z.; Wang, J.; Wang, S. Quantitative classification of northeast Asian dust events. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef]
- Hartmann, D. Chapter 6-atmospheric general circulation and climate. In Global Physical Climatology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 159–193. [Google Scholar]
- Lancaster, N. Geomorphology of Desert Dunes; Psychology Press: East Sussex, UK, 1995. [Google Scholar]
- Hahnenberger, M.; Nicoll, K. Geomorphic and land cover identification of dust sources in the eastern Great Basin of Utah, U.S.A. Geomorphol. 2014, 204, 657–672. [Google Scholar] [CrossRef]
- Qian, G.; Dong, Z.; Luo, W.; Wang, H. Variations of horizontal and vertical velocities over two-dimensional transverse dunes: A wind tunnel simulation of the effect of windward slope. J. Arid. Environ. 2009, 73, 1109–1116. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.; Klein Tank, A.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Rusticucci, M.; et al. Observations: Surface and Atmospheric Climate Change; 2007; Chapter 3; pp. 235–336. Available online: https://www.osti.gov/etdeweb/biblio/20962165 (accessed on 4 February 2021).
- Zhang, J.; Shao, Y.; Huang, N. Measurements of dust deposition velocity in a wind-tunnel experiment. Atmos. Chem. Phys. Discuss. 2014, 14, 8869–8882. [Google Scholar] [CrossRef] [Green Version]
- Geiger, A.; Cooper, J. Overview of Airborne Metals Regulations, Exposure Limits, Health Effects, and Contemporary Research; US Environmental Protection Agency: Washington, DC, USA, 2010; Volume 25, p. 2015.
- Al-Dousari, A.M.; Al-Awadhi, J. Dust fallout in northern Kuwait, major sources and characteristics. Kuwait J. Sci. Eng. 2012, 39, 171–187. [Google Scholar]
- Trenberth, K. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Tao, W.-K.; Chen, J.-P.; Li, Z.; Wang, C.; Zhang, C. Impact of aerosols on convective clouds and precipitation. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef] [Green Version]
- Previdi, M.; Liepert, B.G. Annular modes and Hadley cell expansion under global warming. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Wesely, M. A review of the current status of knowledge on dry deposition. Atmos. Environ. 2000, 34, 2261–2282. [Google Scholar] [CrossRef]
Location | Period | Deposition Rate (t km −2 Year−1) | References |
---|---|---|---|
Israel | 1968–1973 | 57–217 | [29] |
Kuwait | 1982 | 2600 | [30] |
Saudi Arabia | 1991–1992 | 4704 | [31] |
Lanzhou, China | 1988–1991 | 108 | [32] |
Urumqi, China | 1981–2004 | 284.5 | [33] |
Iran | 2008–2009 | 72–120 | [34] |
Uzbekistan | 2003–2010 | 8365 | [6] |
Type | Description | Criterion |
---|---|---|
B | Arid climate | Pann < 10 × Pth |
BS | Arid steppe climate | Pann > 05 × Pth |
BW | Arid desert climate | Pann ≤ 05 × Pth |
C | Warm temperate climate | −3 C < Tmin< +18 C |
Cs | Warm temperate climate, with dry summer | Psmin < Pwmin, Pwmax > 2 Psmin and Psmin < 40 mm |
Cw | Warm temperate climate, with dry winter | Pwmin < Psmin and Psmax > 10 Pwmin |
Cf | Warm temperate climate, fully humid | Neither Cs nor Cw |
D | Snow climate | Tmin ≤ −3 C |
Ds | Snow climate, with dry summer | Psmin < Pwmin.Pwmax > 3Psmin and Psmin < 40 mm |
Dw | Snow climate, with dry winter | Pwmin < Psmin and Psmax > 10 Pwmin |
Df | Snow climate, with fully humid | Neither Ds nor Dw |
Classification | Geo-Coordinates | Distance | |||||
---|---|---|---|---|---|---|---|
No | Code | Latitude | Longitude | Climate Range | Altitude (m a.s.l.) | Total km | |
1 | G01 | 34.000553 | 45.497595 | Hot semi-arid climate | [BSh] | 144 | 0 |
2 | G02 | 34.007182 | 45.499075 | Hot semi-arid climate | [BSh] | 184 | 1 |
3 | G03 | 34.393584 | 45.648174 | --- | [Csa]-[BSh] | 394 | 52 |
4 | G04 | 34.423028 | 45.993753 | Temperate Hot Summer | [Csa] | 910 | 113 |
5 | G05 | 34.353365 | 47.101335 | Temperate Hot Summer | [Csa] | 1304 | 245 |
6 | G06 | 33.024976 | 47.759393 | ---- | [BSh]-[Csa] | 581 | 632 |
7 | G07 | 32.380038 | 48.282664 | Hot semi-arid climate | [BSh] | 109 | 733 |
8 | G08 | 31.445194 | 48.632398 | Hot desert climate | [BWh] | 25 | 860 |
9 | G09 | 30.584651 | 49.163632 | Hot desert climate | [BWh] | 6 | 991 |
10 | G10 | 30.352411 | 48.292293 | Hot desert climate | [BWh] | 2 | 1091 |
Criteria | Seasonal Deposition Rates | Wind Velocity | ||||
---|---|---|---|---|---|---|
Climate | Seasons | GDR t km−2 | Model Output t km−2 | Wind Less than 2 m s−1 | Wind Speed m s−1 | Wind Direction |
BWh | Winter | 18.9 | 4.8 | 25.8% | 2.3 | WNW |
Spring | 28.5 | 6.2 | 15.5% | 2.9 | WNW | |
Summer | 34.5 | 6.1 | 10.7% | 3.0 | WNW | |
Fall | 18 | 4 | 25.4% | 2.0 | SE-NW | |
BSh | Winter | 15.6 | 2.4 | 18.5% | 2.3 | SE |
Spring | 24.9 | 4.7 | 16.0% | 2.5 | ESE | |
Summer | 22.2 | 3.3 | 9.7% | 2.5 | ESE | |
Fall | 16.2 | 3.3 | 31.8% | 1.8 | SE | |
Csa | Winter | 9.3 | 1.2 | 27.2% | 2.0 | SE-E |
Spring | 12.3 | 3.2 | 26.4% | 2.3 | W-E | |
Summer | 12.3 | 3.6 | 10.0% | 3.4 | WNW | |
Fall | 6.6 | 2.4 | 28.9% | 1.9 | SE |
Classification | BWh (G10, G09, G08) | BSh (G07, G01, G02) | Csa (G06, G05, G04, G03) | ||||||
---|---|---|---|---|---|---|---|---|---|
Lat and Long | 47.60 E 29.97 N | 46.97 E 31.99 N | 45.90 E 33.00 N | ||||||
Climate Pattern | Temp °C | Rain mm | GDR t km−2 | Temp °C | Rain Mm | GDR t km−2 | Temp °C | Rain mm | GDR t km−2 |
Means | 29.6 | 14.1 | 8.4 | 24.5 | 40.20 | 6.6 | 18.6 | 42.00 | 3.5 |
Std | 11.60 | 13.0 | 3.6 | 12.20 | 33.30 | 3.4 | 13.80 | 34.00 | 2.3 |
Max | 55 | 43 | 21 | 55 | 116 | 26 | 52 | 107 | 10 |
Min | 5 | null | - | 3 | Null | - | −6 | null | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadi Foroushani, M.; Opp, C.; Groll, M. Investigation of Aeolian Dust Deposition Rates in Different Climate Zones of Southwestern Iran. Atmosphere 2021, 12, 229. https://doi.org/10.3390/atmos12020229
Ahmadi Foroushani M, Opp C, Groll M. Investigation of Aeolian Dust Deposition Rates in Different Climate Zones of Southwestern Iran. Atmosphere. 2021; 12(2):229. https://doi.org/10.3390/atmos12020229
Chicago/Turabian StyleAhmadi Foroushani, Mansour, Christian Opp, and Michael Groll. 2021. "Investigation of Aeolian Dust Deposition Rates in Different Climate Zones of Southwestern Iran" Atmosphere 12, no. 2: 229. https://doi.org/10.3390/atmos12020229
APA StyleAhmadi Foroushani, M., Opp, C., & Groll, M. (2021). Investigation of Aeolian Dust Deposition Rates in Different Climate Zones of Southwestern Iran. Atmosphere, 12(2), 229. https://doi.org/10.3390/atmos12020229