Seasonal Prediction of Arctic Summer Sea Ice Concentration from a Partial Least Squares Regression Model
Abstract
:1. Introduction
2. Data and Method
2.1. Data
2.2. Model Introduction
2.3. Introduction to the Research Areas: The Arctic Shipping Route
3. Characteristics of Arctic Sea Ice Variation and Key Area Selection
4. The Leading Predictable Modes
5. PE PLSR Model Building
5.1. Modeling Process
5.2. Model Prediction Effect and Performance Evaluation
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Serreze, M.; Barry, R. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Francis, J.; Vavrus, S. Evidence linking arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 2012, 39, L06801. [Google Scholar] [CrossRef]
- Grunseich, G.; Wang, B. Arctic sea ice patterns driven by the Asian summer monsoon. J. Clim. 2016, 29, 9097–9112. [Google Scholar] [CrossRef]
- Kerr, R. Will the Arctic Ocean lose all its ice? Science 1999, 286, 1828. [Google Scholar] [CrossRef]
- Stroeve, J.; Serreze, M.; Fetterer, F.; Arbetter, T.; Meier, W.; Maslanik, J.; Knowles, K. Tracking the Arctic’s shrinking ice cover: Another extreme September minimum in 2004. AGU Fall Meet. Abstr. 2005, 32, L04501. [Google Scholar] [CrossRef] [Green Version]
- Serreze, M.; Holland, M.; Stroeve, J. Perspectives on the Arctic’s shrinking sea-ice cover. Science 2007, 315, 1533–1536. [Google Scholar] [CrossRef] [Green Version]
- Stein, R.; Fahl, K.; Gierz, P.; Niessen, F.; Lohmann, G. Arctic Ocean sea ice cover during the penultimate glacial and the last interglacial. Nat. Commun. 2017, 8, 373. [Google Scholar] [CrossRef]
- Yu, L.; Zhong, S.; Zhou, M.; Lenschow, D.H.; Sun, B. Revisiting the Linkages between the Variability of Atmospheric Circulations and Arctic Melt-Season Sea Ice Cover at Multiple Time Scales. J. Clim. 2019, 32, 1461–1482. [Google Scholar] [CrossRef]
- Ogi, M.; Wallace, J.M. Summer minimum Arctic sea ice extent and the associated summer atmospheric circulation. Geophys. Res. Lett. 2007, 34, L12705. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, K.; Tachibana, Y.; Honda, M.; Ukita, J. Intra-seasonal relationship between the Northern Hemisphere sea ice variability and the North Atlantic Oscillation. Geophys. Res. Lett. 2006, 33, L14711. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wu, B.; Tang, C.; Walsh, J.; Ikeda, M. Seesaw structure of subsurface temperature anomalies between the Barents Sea and the Labrador Sea. Geophys. Res. Lett. 2004, 31, L19301. [Google Scholar] [CrossRef]
- Thompson, D.W.; Wallace, J.M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 1998, 25, 1297–1300. [Google Scholar] [CrossRef] [Green Version]
- Deser, C.; Walsh, J.E.; Timlin, M.S. Arctic sea ice variability in the context of recent atmospheric circulation trends. J. Clim. 2000, 13, 617–633. [Google Scholar] [CrossRef]
- Hu, A.; Rooth, C.; Bleck, R.; Deser, C. NAO influence on sea ice extent in the Eurasian coastal region. Geophys. Res. Lett. 2002, 29, 2053. [Google Scholar] [CrossRef] [Green Version]
- Rigor, I.; Wallace, J.M.; Colony, R.L. Response of sea ice to the Arctic Oscillation. J. Clim. 2002, 15, 2648–2663. [Google Scholar] [CrossRef] [Green Version]
- Ding, Q.; Wallace, J.M.; Battisti, D.S.; Steig, E.J.; Gallant, A.J.E.; Kim, H.-J.; Geng, L. Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature 2014, 509, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Schweiger, A.; L’Heureux, M.; Battisti, D.S.; Po-Chedley, S.; Johnson, N.C.; Blanchard-Wrigglesworth, E.; Harnos, K.; Zhang, Q.; Eastman, R.; et al. Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat. Publ. Group 2017, 7, 289–295. [Google Scholar] [CrossRef]
- Yu, L.; Wu, Z.; Zhang, R.; Yang, X. Partial least regression approach to forecast the East Asian winter monsoon using Eurasian snow cover and sea surface temperature. Clim. Dyn. 2018, 51, 4573–4584. [Google Scholar] [CrossRef]
- Ferguson, S.H.; Taylor, M.K.; Messier, F. Influence of sea ice dynamics on habitat selection by polar bears. Ecology 2000, 81, 761–772. [Google Scholar] [CrossRef]
- Overland, J.; Wood, K.; Wang, M. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice Tellus A. Dyn. Meteorol. Oceanogr. 2010, 62, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Overland, J.; Wood, K.; Wang, M. Warm Arctic–cold continents: Climate impacts of the newly open Arctic Sea. Polar Res. 2011, 30, 15787. [Google Scholar] [CrossRef]
- Ivanov, V.; Varentsov, M.; Matveeva, T.; Repina, I.; Artamonov, A.; Khavina, E. Arctic sea ice decline in the 2010s: The increasing role of the ocean-air heat exchange in the late summer. Atmosphere 2019, 10, 184. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Perlwitz, J.; Eischeid, J.; Quan, X.; Xu, T.; Zhang, T.; Hoerling, M.; Jha, B.; Wang, W. Contribution of sea ice loss to arctic amplification. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Guemas, V.; Blanchard, E.; Chevallier, M.; Day, J.; Déqué, M.; Doblas, F.; Fuckar Neven, S.; Geme, A.; Hawkins, E.; Keeley, S.; et al. A review on Arctic sea-ice predictability and prediction on seasonal to decadal time-scales. Q. J. R. Meteorol. Soc. 2016, 142, 546–561. [Google Scholar] [CrossRef]
- Petty, A.A.; Schröder, D.; Stroeve, J.C.; Markus, T.; Miller, J.; Kurtz, N.T.; Feltham, D.L.; Flocco, D. Skillful spring forecasts of September Arctic sea ice extent using passive microwave sea ice observations. Earths Future 2017, 5, 254–263. [Google Scholar] [CrossRef]
- Wayand, N.E.; Bitz, C.M.; Blanchard, W. A Year—Round Subseasonal-to-Seasonal Sea Ice Prediction Portal. Geophys. Res. Lett. 2019, 46, 3298–3307. [Google Scholar] [CrossRef]
- Cruz-García, R.; Guemas, V.; Chevallier, M.; Massonnet, F. An assessment of regional sea ice predictability in the arctic ocean. Clim. Dyn. 2019, 53, 427–440. [Google Scholar] [CrossRef]
- Bushuk, M.; Msadek, R.; Winton, M.; Vecchi, G.A.; Gudgel, R.; Rosati, A. Skillful regional prediction of arctic sea ice on seasonal timescales. Geophys. Res. Lett. 2017, 44, 4953–4964. [Google Scholar] [CrossRef]
- Massonnet, F.; Fichefet, T.; Goosse, H. Prospects for improved seasonal arctic sea ice predictions from multivariate data assimilation. Ocean Model. 2015, 88, 16–25. [Google Scholar] [CrossRef]
- Melia, N.; Haines, K.; Hawkins, E.; Day, J.J. Towards seasonal Arctic shipping route predictions. Environ. Res. Lett. 2017, 12, 084005. [Google Scholar] [CrossRef]
- Yang, C.; Liu, J.; Xu, S. Seasonal arctic sea ice prediction using a newly developed fully coupled regional model with the assimilation of satellite sea ice observations. J. Adv. Modeling Earth Syst. 2020, 12, e2019MS001938. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.; Arampath, L.; Yamaguchi, H.; Ono, J. Ice-ocean coupled computations for sea-ice prediction to support ice navigation in arctic sea routes. Polar Res. 2015, 34, 25008. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Steele, M.; Lindsay, R.; Schweiger, A.; Morison, J. Ensemble 1-year predictions of arctic sea ice for the spring and summer of 2008. Geophys. Res. Lett. 2008, 35, L08502. [Google Scholar] [CrossRef] [Green Version]
- Kattsov, V.; Ryabinin, V.; Overland, J.; Serreze, M.; Visbeck, M.; Walsh, J.; Meier, W.; Zhang, X. Arctic sea ice change: A grand challenge of climate science. J. Glaciol. 2010, 56, 1115–1121. [Google Scholar] [CrossRef] [Green Version]
- Stroeve, J.; Hamilton, L.; Bitz, C.; Blanchard, E. Predicting September sea ice: Ensemble skill of the search sea ice outlook 2008–2013. Geophys. Res. Lett. 2014, 41, 2411–2418. [Google Scholar] [CrossRef] [Green Version]
- Vihma, T. Effects of arctic sea ice decline on weather and climate: A review. Surv. Geophys. 2014, 35, 1175–1214. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Kim, H.; Choi, Y.; Kim, W.; Kim, H. Development of statistical seasonal prediction models of arctic sea ice concentration using CERES absorbed solar radiation. J. Atmos. Sci. 2016, 52, 467–477. [Google Scholar] [CrossRef]
- Hawkins, E.; Tietsche, S.; Day, J.; Melia, N.; Haines, K.; Keeley, S. Aspects of designing and evaluating seasonal-to-interannual Arctic sea-ice prediction systems. Q. J. R. Meteorol. Soc. 2016, 142, 672–683. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Wang, B.; Li, J.; Jin, F. An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res. Atmos. 2009, 27, 114. [Google Scholar] [CrossRef]
- Wu, Z.; Li, J.; Jiang, Z.; He, J. Predictable climate dynamics of abnormal East Asian winter monsoon: Once-in-a-century snowstorms in 2007/2008 winter. Clim. Dyn. 2011, 37, 1661. [Google Scholar] [CrossRef]
- Wold, S.; Ruhe, A.; Wold, H.; Dunn, I. The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. J. Sci. Stat. Comput. 1984, 5, 735–743. [Google Scholar] [CrossRef] [Green Version]
- Yeniay, Q.; Goktas, A. A comparison of partial least square regression with other prediction methods. Acettepe J. Math. Stat. 2002, 31, 99–101. [Google Scholar]
- Haenlein, M.; Kaplan, A. A beginner’s guide to partial least squares analysis. Underst. Stat. 2004, 3, 283–297. [Google Scholar] [CrossRef]
- Tan, Y.; Shi, L.; Tong, W.; Huang, G.; Wang, C. Multi-class tumor classification by discriminant partial least squares using microarray gene expression data and assessment of classification models. Comput. Biol. Chem. 2004, 28, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Haaland, D.; Thomas, E. Partial least-squares methods for spectral analyses. 2. Application to simulated and glass spectral data. Anal. Chem. 1998, 60, 1202–1208. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2011, 58, 109–130. [Google Scholar] [CrossRef]
- Udelhoven, T.; Emmerling, C.; Jarmer, T. Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: A feasibility study. Plant Soil 2003, 251, 319–329. [Google Scholar] [CrossRef]
- McIntosh, A.; Lobaugh, N. Partial least squares analysis of neuroimaging data: Applications and advances. Neuroimage 2004, 23, 250–263. [Google Scholar] [CrossRef]
- Zhang, H.; Qin, J.; Li, Y. Climatic background of cold and wet winter in southern China: Part I observational analysis. Clim. Dyn. 2011, 37, 2335–2354. [Google Scholar] [CrossRef]
- Wu, Z.; Lin, H.; Li, Y.; Tang, Y. Seasonal prediction of killing-frost frequency in South-Central Canada during the cool/overwintering-crop growing season. J. Appl. Meteorol. Climatol. 2013, 52, 102–113. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, L. Seasonal prediction of the East Asian summer monsoon with a partial-least square model. Clim. Dyn. 2015, 46, 3067–3078. [Google Scholar] [CrossRef]
- Ye, X.; Wu, Z.; Wang, Z.; Shen, H.; Xu, J. Seasonal prediction of the Yangtze River runoff using a partial least squares regression model. Atmos. Ocean 2018, 56, 117–128. [Google Scholar] [CrossRef]
- Rayner, N.; Parker, D.; Horton, E.; Folland, C.; Alexander, L.; Rowell, D.; Kent, E.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 2003, 108, 4407. [Google Scholar] [CrossRef]
- Smith, T.; Reynolds, R.; Peterson, T.; Lawrimore, J. Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Clim. 2008, 21, 2283–2296. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Zhu, Y. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Duan, W.; Li, Y.; Mao, J. A timescale decomposed threshold regression downscaling approach to forecasting South China early summer rainfall. Adv. Atmos. Sci. 2016, 33, 1071–1084. [Google Scholar] [CrossRef]
- Knight, J.; Folland, C.; Scaife, A. Climate impacts of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 2006, 33, L17706. [Google Scholar] [CrossRef] [Green Version]
- Koenigk, T.; Mikolajewicz, U.; Jungclaus, J.H.; Kroll, A. Sea ice in the Barents Sea: Seasonal to interannual variability and climate feedbacks in a global coupled model. Clim. Dyn. 2008, 32, 1119–1138. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.; Alexander, M.A.; Ault, T.R.; Cobb, K.M.; Deser, C.; Di Lorenzo, E.; Mantua, N.J.; Miller, A.J.; Minobe, S.; Nakamura, H.; et al. The Pacific Decadal Oscillation, Revisited. J. Clim. 2016, 29, 4399–4427. [Google Scholar] [CrossRef] [Green Version]
- Deser, C.; Alexander, M.A.; Xie, S.P.; Phillips, A.S. Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci. 2010, 2, 115. [Google Scholar] [CrossRef] [Green Version]
- Rui-Bo, W.A.; Shuanglin, L.I.; Zhe, H.A. Evaluation of the HadISST1 and NSIDC 1850 onward sea ice datasets with a focus on the Barents-Kara seas. Atmos. Ocean. Sci. Lett. 2018. [Google Scholar] [CrossRef] [Green Version]
- Serreze, M.C.; Crawford, A.D.; Stroeve, J.C.; Barrett, A.P.; Woodgate, R.A. Variability, trends, and predictability of seasonal sea ice retreat and advance in the Chukchi Sea. J. Geophys. Res. Ocean. 2016, 127. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barrett, A.P.; Crawford, A.D.; Woodgate, R.A. Monthly variability in Bering Strait oceanic volume and heat transports, links to atmospheric circulation and ocean temperature, and implications for sea ice conditions. J. Geophys. Res. Ocean. 2019, 124, 9317–9337. [Google Scholar] [CrossRef]
- Wendler, G.; Shulski, M.; Moore, B. Changes in the climate of the Alaskan North Slope and the ice concentration of the adjacent Beaufort Sea. Theor. Appl. Climatol. 2009, 99, 67–74. [Google Scholar] [CrossRef]
- Woodgate, R.A.; Weingartner, T.; Lindsay, R. The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea-ice retreat. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Parkinson, C.; Cavalieri, D. Arctic sea ice variability and trends, 1979–2006. J. Geophys. Res. 2008, 113, C07003. [Google Scholar] [CrossRef]
- Screen, J.A.; Simmonds, I. Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys. Res. Lett. 2010, 37, L16707. [Google Scholar] [CrossRef] [Green Version]
- Mikhailova, N.V.; Yurovsky, A.V. Analysis of Principal Components of the Sea Ice Concentration Fields in the Barents Sea. Phys. Oceanogr. 2017, 11–18. [Google Scholar] [CrossRef]
- Simonsen, K.; Haugan, P. Heat budgets of the Arctic Mediterranean and sea surface heat flux parameterizations for the Nordic Seas. J. Geophys. Res. 1996, 101, 6553–6576. [Google Scholar] [CrossRef]
- Årthun, M.; Eldevik, T.; Smedsrud, L.H.; Skagseth, Ø.; Ingvaldsen, R.B. Quantifying the Influence of Atlantic Heat on Barents Sea Ice Variability and Retreat. J. Clim. 2012, 25, 4736–4743. [Google Scholar] [CrossRef] [Green Version]
- Onarheim, I.H.; Eldevik, T.; Årthun Marius Ingvaldsen, R.B.; Smedsrud, L.H. Skillful prediction of barents sea ice cover. Geophys. Res. Lett. 2015, 42, 5364–5371. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.Y.; Hong, C.C.; Hsu, H.H. Compounding effects of warm sea surface temperature and reduced sea ice on the extreme circulation over the extratropical north pacific and north America during the 2013–2014 boreal winter. Geophys. Res. Lett. 2015, 42, 1612–1618. [Google Scholar] [CrossRef]
- Grassi, B.; Redaelli, G.; Visconti, G. Arctic sea ice reduction and extreme climate events over the mediterranean region. J. Clim. 2013, 26, 10101–10110. [Google Scholar] [CrossRef]
- Grémillet, D.; Fort, J.; Amélineau, F.; Zakharova, E.; Le Bot, T.; Sala, E.; Gavrilo, M. Arctic warming: Nonlinear impacts of sea-ice and glacier melt on seabird foraging. Glob. Chang. Biol. 2015, 21, 1116–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, X.; Wu, Z. Seasonal Prediction of Arctic Summer Sea Ice Concentration from a Partial Least Squares Regression Model. Atmosphere 2021, 12, 230. https://doi.org/10.3390/atmos12020230
Ye X, Wu Z. Seasonal Prediction of Arctic Summer Sea Ice Concentration from a Partial Least Squares Regression Model. Atmosphere. 2021; 12(2):230. https://doi.org/10.3390/atmos12020230
Chicago/Turabian StyleYe, Xiaochen, and Zhiwei Wu. 2021. "Seasonal Prediction of Arctic Summer Sea Ice Concentration from a Partial Least Squares Regression Model" Atmosphere 12, no. 2: 230. https://doi.org/10.3390/atmos12020230
APA StyleYe, X., & Wu, Z. (2021). Seasonal Prediction of Arctic Summer Sea Ice Concentration from a Partial Least Squares Regression Model. Atmosphere, 12(2), 230. https://doi.org/10.3390/atmos12020230