Spatio-Temporal Characteristics of PM2.5, PM10, and AOD over the Central Line Project of China’s South-North Water Diversion in Henan Province (China)
Abstract
:1. Introduction
2. Study Region and Meteorology
2.1. Geography of the Study Area
2.2. Methods
3. Results and Discussion
3.1. Overall Concentration Profile
3.2. Seasonal Variations
3.2.1. Seasonal Characteristics of PM10, PM2.5, and Meteorological Parameters
3.2.2. Relationships among PM2.5, PM10, and Meteorological Parameters
3.3. Daily Variation
4. Conclusions
- (1)
- The middle reaches (Zhengzhou) of the Henan section of the CSNWD are the most seriously polluted, followed by the upstream reaches (Nanyang), while the downstream reaches (Anyang) are the least polluted. The annual average concentration of PM2.5 in the upper, middle, and lower reaches exceeded the standard, while the concentration of PM10 only exceeded the standard in the middle reaches.
- (2)
- The concentration, wind speed, wind direction, humidity, and temperature of PM2.5 and PM10 in the study region change with the normal seasonal shift, but some differences were caused by the surrounding environment, which induces unexpected changes during the seasons or even contrary qualities to the normal seasons.
- (3)
- The concentrations of PM2.5 and PM10 in the upstream reaches (Nanyang) of the Middle Route Project of the South-North water diversion were negatively correlated, positively correlated, and negatively correlated with wind speed, humidity, and temperature, respectively; the concentrations of PM2.5 and PM10 in the middle reaches (Zhengzhou) were negatively correlated, positively correlated, and negatively correlated with wind speed, humidity, and temperature, respectively; and the concentrations of PM2.5 and PM10 in the downstream reached (Anyang) had no obvious correlation with wind speed and humidity. The concentration of PM2.5 and PM10 was negatively correlated with temperature. The wind speed was roughly the same as that during the normal seasons.
- (4)
- The sources of PM2.5 and PM10 in the upper, middle, and lower reaches of the CSNWD in the Henan section were mainly local and almost free from external pollution transport.
- (5)
- The concentration of PM2.5 and PM10 and wind speed at Nanyang Station and Zhengzhou Station remained unchanged throughout the day, while the humidity and temperature change daily normally. The wind speed at Anyang Station changed slightly in a day, and the humidity, PM2.5, and PM10 showed certain changes with the wind speed.
- (6)
- The CALIPSO_AOD values at the three stations were higher in summer than in the other three seasons, whereas the AOD values at the Zhengzhou and Anyang Stations were higher than those at Nanyang.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edenhofer, O.; Seyboth, K. Intergovernmental Panel on Climate Change (IPCC). In Encyclopedia of Energy Natural Resource & Environment Economy; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Khamutian, R.; Najafi, F.; Soltanian, M.; Shokoohizadeh, M.J.; Afshari, A. The association between air pollution and weather conditions with increase in the number of admissions of asthmatic patients in emergency wards: A case study in Kermanshah. Med. J. Islam. Repub. Iran 2015, 29, 229. [Google Scholar]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Menon, S.; Hansen, J.; Nazarenko, L.; Luo, Y. Climate Effects of Black Carbon Aerosols in China and India. Science 2002, 297, 2250–2253. [Google Scholar] [CrossRef] [Green Version]
- Charlson, R.J.; Schwartz, S.E.; Hales, J.M.; Cess, R.D.; Coakley, J.A.; Hansen, J.E.; Hofmann, D.J. Climate forcing by anthropogenic aerosols. Science 1992, 255, 423–430. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Cao, F. Fine particulate matter (PM2.5) in China at a city level. Sci. Rep. 2015, 5, 14884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Ariya, P.A. Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): A review. Atmos. Environ. 2006, 40, 795–820. [Google Scholar] [CrossRef]
- Approximation, H. Atmospheric Science–An Introductory Survey, 2nd ed.; Academic Press: Cambridge, MA, USA, 1977. [Google Scholar]
- Kaufman, Y.J.; Tanré, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, Y.J.; Boucher, O.; Tanré, D.; Chin, M.; Remer, L.A.; Takemura, T. Aerosol anthropogenic component estimated from satellite data. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Chung, C.E.; Ramanathan, V.; Kim, D.; Podgorny, I.A. Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Huang, F.; Pan, B.; Wu, J.; Chen, E.; Chen, L. Relationship between exposure to PM2.5 and lung cancer incidence and mortality: A meta-analysis. Oncotarget 2017, 8, 43322–43331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramanathan, V.; Crutzen, P.J.; Kiehl, J.T.; Rosenfeld, D. Aerosols, Climate, and the Hydrological Cycle. Science 2001, 294, 2119–2124. [Google Scholar] [CrossRef] [Green Version]
- Maji, K.J.; Arora, M.; Dikshit, A.K. Burden of disease attributed to ambient PM2.5 and PM10 exposure in 190 cities in China. Environ. Sci. Pollut. Res. 2017, 24, 11559–11572. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, B.; Wang, S.; Yang, F.; Xing, J.; Morawska, L.; Ding, A.; Kulmala, M.; Kerminen, V.-M.; Kujansuu, J.; et al. Particulate matter pollution over China and the effects of control policies. Sci. Total Environ. 2017, 584–585, 426–447. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A.; Dockery, D.W. Health Effects of Fine Particulate Air Pollution: Lines that Connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Sahu, L.K.; Kondo, Y.; Miyazaki, Y.; Kuwata, M.; Koike, M.; Takegawa, N.; Tanimoto, H.; Matsueda, H.; Yoon, S.C.; Kim, Y.J. Anthropogenic aerosols observed in Asian continental outflow at Jeju Island, Korea, in spring 2005. J. Geophys. Res. 2009, 114, D03301. [Google Scholar] [CrossRef]
- Pani, S.K.; Ou-Yang, C.F.; Wang, S.H.; Ogren, J.A.; Sheridan, P.J.; Sheu, G.R.; Lin, N.H. Relationship between long-range transported atmospheric black carbon and carbon monoxide at a high-altitude background station in East Asia. Atmos. Environ. 2019, 210, 86–99. [Google Scholar] [CrossRef]
- Komazaki, Y.; Kondo, Y.; Uno, I.; Kanaya, Y.; Pan, X.; Miyakawa, T.; Taketani, F. Long-term observations of black carbon mass concentrations at Fukue Island, western Japan, during 2009–2015: Constraining wet removal rates and emission strengths from East Asia. Atmos. Chem. Phys. 2016, 16, 10689–10705. [Google Scholar]
- Querol, X.; Alastuey, A.; Rodriguez, S.; Plana, F.; Puig, O. PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmos. Environ. 2001, 35, 6407–6419. [Google Scholar] [CrossRef]
- Ho, K.F.; Lee, S.C.; Chan, C.K.; Yu, J.C.; Chow, J.C.; Yao, X.H. Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong. Atmos. Environ. 2003, 37, 31–39. [Google Scholar] [CrossRef]
- Fang, X.; Bi, X.; Xu, H.; Wu, J.; Zhang, Y.; Feng, Y. Source apportionment of ambient PM10 and PM2.5 in Haikou, China. Atmos. Res. 2017, 190, 1–9. [Google Scholar] [CrossRef]
- Zhou, X.; Cao, Z.; Ma, Y.; Wang, L.; Wu, R.; Wang, W. Concentrations, correlations and chemical species of PM2.5/PM10 based on published data in China: Potential implications for the revised particulate standard. Chemosphere 2016, 144, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, Q.; Zhao, H.; Wang, L.; Tao, R. Variations in PM10, PM2.5 and PM1.0 in an Urban Area of the Sichuan Basin and Their Relation to Meteorological Factors. Atmosphere 2015, 6, 150–163. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Sharma, S.K.; Vijayan, N.; Mandal, T.K. Seasonal characteristics of aerosols (PM2.5 and PM10) and their source apportionment using PMF: A four year study over Delhi, India. Environ. Pollut. 2020, 262, 114337. [Google Scholar] [CrossRef]
- Chianese, E.; Tirimberio, G.; Riccio, A. PM2.5 and PM10 in the urban area of Naples: Chemical composition, chemical properties and influence of air masses origin. J. Atmos. Chem. 2019, 76, 151–169. [Google Scholar] [CrossRef]
- Wei, Y.; Tang, D.; Ding, Y.; Agoramoorthy, G. Incorporating water consumption into crop water footprint: A case study of China’s South–North Water Diversion Project. Sci. Total Environ. 2016, 545–546, 601–608. [Google Scholar] [CrossRef]
- Xu, H.; Li, M.; Li, G.; Zhang, S.; Yang, Z. Impact of the south-to-north water diversion project on groundwater resources: A case study in pinggu basin, Beijing, China. Environ. Eng. Manag. J. 2013, 12, 2239–2247. [Google Scholar]
- Yang, Y.; Lei, Y.; Zhang, Q. Quantity versus Quality in China’s South-to-North Water Diversion Project: A System Dynamics Analysis. Water 2015, 7, 2142–2160. [Google Scholar] [CrossRef] [Green Version]
- Dou, M.; Zhang, J.; Li, G.; Zhao, P. A multi-objective water trading optimization model for Henan Province’s water-receiving area in the Middle Route of China’s South-to-North Water Diversion Project. Water Policy 2019, 21, 693–707. [Google Scholar] [CrossRef]
- Zhu, Y.P.; Zhang, H.P.; Chen, L.; Zhao, J.F. Influence of the South–North Water Diversion Project and the Mitigation Projects on the water quality of Han River. Sci. Total Environ. 2008, 406, 57–68. [Google Scholar] [CrossRef]
- Wang, X.; Dickinson, R.E.; Su, L.; Zhou, C.; Wang, K. PM 2.5 Pollution in China and How It Has Been Exacerbated by Terrain and Meteorological Conditions. Bull. Am. Meteorol. Soc. 2018, 99, 105–119. [Google Scholar] [CrossRef]
- Bilal, M.; Nichol, J.; Nazeer, M.; Shi, Y.; Wang, L.; Kumar, K.; Ho, H.; Mazhar, U.; Bleiweiss, M.; Qiu, Z. Characteristics of Fine Particulate Matter (PM2.5) over Urban, Suburban, and Rural Areas of Hong Kong. Atmosphere 2019, 10, 496. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.K.; Yao, X. Air pollution in mega cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Su, B.; Li, H.; Zhang, M.; Bilal, M.; Wang, M.; Atique, L.; Zhang, Z.; Zhang, C.; Han, G.; Qiu, Z. Optical and Physical Characteristics of Aerosol Vertical Layers over Northeastern China. Atmosphere 2020, 11, 501. [Google Scholar] [CrossRef]
- Zhang, M.; Su, B.; Bilal, M.; Atique, L.; Han, G. An Investigation of Vertically Distributed Aerosol Optical Properties over Pakistan Using CALIPSO Satellite Data. Remote Sens. 2020, 12, 2183. [Google Scholar] [CrossRef]
- Guoyu, R.; Hongbin, L.; Ziying, C.; Li, Z.; Weijing, X. Multi-Time-Scale Climatic Variations over Eastern China and Implications for the South-North Water Diversion Project. J. Hydrometeorol. 2011, 12, 600–617. [Google Scholar]
- Hu, M.; Wong, H.; Yin, Q.; Wang, J. Estimation of daily PM2.5 concentration and its relationship with meteorological conditions in Beijing. J. Environ. Sci. 2016, 48, 161–168. [Google Scholar]
- Ye, B.; Ji, X.; Yang, H.; Yao, X.; Chan, C.K.; Cadle, S.H.; Chan, T.; Mulawa, P.A. Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period. Atmos. Environ. 2003, 37, 499–510. [Google Scholar] [CrossRef]
- Che, H.; Xia, X.; Zhu, J.; Li, Z.; Dubovik, O. Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements. Atmos. Chem. Phys. 2014, 14, 2125–2138. [Google Scholar] [CrossRef] [Green Version]
- Lijie, H.; Lunche, W.; Aiwen, L.; Ming, Z.; Muhammad, B.; Minghui, T. Aerosol Optical Properties and Associated Direct Radiative Forcing over the Yangtze River Basin during 2001–2015. Remote Sens. 2017, 9, 746. [Google Scholar] [CrossRef] [Green Version]
- Hien, P.D.; Bac, V.T.; Tham, H.C.; Nhan, D.D.; Vinh, L.D. Influence of meteorological conditions on PM 2.5 and PM 2.510 concentrations during the monsoon season in Hanoi, Vietnam. Atmos. Environ. 2002, 36, 3473–3484. [Google Scholar] [CrossRef]
- Tran, H.N.Q.; Moelders, N. Investigations on meteorological conditions for elevated PM2.5 in Fairbanks, Alaska. Atmos. Res. 2011, 99, 39–49. [Google Scholar] [CrossRef]
- Qianqian, Y.; Qiangqiang, Y.; Tongwen, L.; Huanfeng, S.; Liangpei, Z. The relationships between PM2.5 and meteorological factors in China: Seasonal and regional variations. Int. J. Environ. Res. 2017, 14, 1510. [Google Scholar] [CrossRef] [Green Version]
Hourly | Counts | Mean | SD | Percentiles | ||||
---|---|---|---|---|---|---|---|---|
Base | - | - | - | 10 | 25 | 50 | 75 | 90 |
Nanyang Station | ||||||||
PM2.5 (μg/m3) | 18,382 | 59.13 | 20.08 | 32.00 | 40.00 | 56.00 | 80.00 | 84.00 |
PM10 (μg/m3) | 18,382 | 66.62 | 22.76 | 36.00 | 45.00 | 64.00 | 90.00 | 95.00 |
Zhengzhou Station | ||||||||
PM2.5 (μg/m3) | 16,590 | 110.07 | 45.12 | 39.00 | 95.00 | 108.00 | 140.00 | 178.00 |
PM10 (μg/m3) | 16,590 | 124.21 | 51.03 | 44.00 | 107.00 | 123.00 | 158.00 | 201.00 |
Anyang Station | ||||||||
PM2.5 (μg/m3) | 16,229 | 53.69 | 56.31 | 8.00 | 15.00 | 32.00 | 72.00 | 137.00 |
PM10 (μg/m3) | 16,229 | 60.50 | 63.79 | 9.00 | 17.00 | 36.00 | 81.00 | 155.00 |
Hourly | Counts | Mean | SD | Percentiles | ||||
---|---|---|---|---|---|---|---|---|
Base | - | - | - | 10 | 25 | 50 | 75 | 90 |
Nanyang | ||||||||
T (°C) | 18,382 | 16.49 | 10.18 | 1.80 | 8.30 | 17.00 | 25.00 | 29.50 |
RH (%) | 18,382 | 56.90 | 27.13 | 17.50 | 36.30 | 57.90 | 78.90 | 93.70 |
W (m/s) | 18,382 | 1.25 | 1.10 | 0 | 0.50 | 0.90 | 1.90 | 2.60 |
V (°) | 18,382 | 122.45 | 129.4 | 0 | 29 | 57 | 315 | 324 |
Zhengzhou Station | ||||||||
T (°C) | 16,590 | 16.44 | 11.04 | 0.70 | 7.30 | 17.30 | 25.80 | 30.50 |
RH (%) | 16,590 | 51.65 | 28.95 | 14.00 | 26.30 | 47.60 | 80.50 | 91.30 |
W (m/s) | 16,590 | 1.36 | 1.33 | 0 | 0.40 | 0.90 | 2.00 | 3.20 |
V (°) | 16,590 | 119.83 | 112.8 | 0 | 4 | 131 | 185 | 315 |
Anyang Station | ||||||||
T (°C) | 16,229 | 15.68 | 11.64 | −0.60 | 5.90 | 16.60 | 25.60 | 30.80 |
RH (%) | 16,229 | 54.49 | 23.02 | 23.50 | 35.60 | 54.60 | 73.90 | 85.10 |
W (m/s) | 16,229 | 1.02 | 0.973 | 0 | 0.40 | 0.80 | 1.50 | 2.40 |
V (°) | 16,229 | 116.32 | 107.9 | 0 | 2 | 123 | 184 | 256 |
Season | T (°C) | RH (%) | W (m/s) | V (°) | PM2.5 (μg/m3) | PM10 (μg/m3) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | |
Nanyang Station | ||||||||||||
Spring | 17.25 | 6.34 | 58.16 | 24.01 | 1.23 | 1.03 | 124.96 | 129.12 | 57.50 | 19.90 | 64.78 | 22.54 |
Summer | 28.01 | 3.72 | 29.88 | 14.61 | 1.53 | 1.25 | 108.76 | 118.62 | 57.16 | 20.14 | 64.38 | 22.84 |
Autumn | 17.23 | 6.53 | 58.88 | 24.61 | 1.25 | 1.01 | 134.99 | 132.03 | 58.16 | 19.69 | 65.51 | 22.29 |
Winter | 3.03 | 4.01 | 80.81 | 16.40 | 0.96 | 1.05 | 118.65 | 135.74 | 63.97 | 19.90 | 72.15 | 22.59 |
Zhengzhou Station | ||||||||||||
Spring | 17.86 | 6.80 | 52.52 | 26.24 | 1.27 | 1.30 | 110.53 | 113.70 | 43.58 | 43.58 | 128.84 | 45.52 |
Summer | 28.62 | 3.85 | 23.18 | 11.60 | 1.98 | 1.50 | 154.97 | 95.53 | 47.27 | 47.27 | 107.78 | 53.52 |
Autumn | 16.39 | 7.10 | 58.18 | 26.33 | 1.19 | 1.30 | 110.50 | 114.69 | 115.69 | 43.80 | 129.40 | 49.53 |
Winter | 2.58 | 4.49 | 74.63 | 20.88 | 0.95 | 0.92 | 100.88 | 117.51 | 117.51 | 42.03 | 132.65 | 47.47 |
Anyang Station | ||||||||||||
Spring | 17.24 | 7.06 | 45.48 | 23.41 | 1.26 | 1.22 | 126.34 | 99.76 | 31.49 | 27.41 | 35.36 | 31.04 |
Summer | 28.54 | 4.37 | 57.49 | 20.61 | 1.04 | 0.96 | 116.75 | 104.64 | 18.95 | 13.53 | 21.17 | 15.31 |
Autumn | 15.63 | 8.13 | 63.74 | 21.27 | 0.86 | 0.87 | 111.46 | 115.58 | 69.36 | 63.43 | 78.26 | 70.73 |
Winter | 1.39 | 4.71 | 53.17 | 22.76 | 0.88 | 0.84 | 109.72 | 112.15 | 97.96 | 64.36 | 114.53 | 73.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, B.; Wu, D.; Zhang, M.; Bilal, M.; Li, Y.; Li, B.-L.; Atique, L.; Zhang, Z.; Howari, F.M. Spatio-Temporal Characteristics of PM2.5, PM10, and AOD over the Central Line Project of China’s South-North Water Diversion in Henan Province (China). Atmosphere 2021, 12, 225. https://doi.org/10.3390/atmos12020225
Su B, Wu D, Zhang M, Bilal M, Li Y, Li B-L, Atique L, Zhang Z, Howari FM. Spatio-Temporal Characteristics of PM2.5, PM10, and AOD over the Central Line Project of China’s South-North Water Diversion in Henan Province (China). Atmosphere. 2021; 12(2):225. https://doi.org/10.3390/atmos12020225
Chicago/Turabian StyleSu, Bo, Dongyu Wu, Miao Zhang, Muhammad Bilal, Yuying Li, Bai-Lian Li, Luqman Atique, Ziyue Zhang, and Fares M. Howari. 2021. "Spatio-Temporal Characteristics of PM2.5, PM10, and AOD over the Central Line Project of China’s South-North Water Diversion in Henan Province (China)" Atmosphere 12, no. 2: 225. https://doi.org/10.3390/atmos12020225
APA StyleSu, B., Wu, D., Zhang, M., Bilal, M., Li, Y., Li, B. -L., Atique, L., Zhang, Z., & Howari, F. M. (2021). Spatio-Temporal Characteristics of PM2.5, PM10, and AOD over the Central Line Project of China’s South-North Water Diversion in Henan Province (China). Atmosphere, 12(2), 225. https://doi.org/10.3390/atmos12020225