Mechanisms for Springtime Onset of Isolated Precipitation across the Southeastern United States
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. IPF Season Evolution: IPF Rain, CAPE, and NSI Annual Cycle
3.2. IPF Season Evolution: Jet Stream, CAPE, and NASH Composites
3.3. IPF Onset in 2009
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bombardi, R.J.; Kinter, J.L.; Frauenfeld, O.W. A Global Gridded Dataset of the Characteristics of the Rainy And Dry Seasons. Bull. Am. Meteorol. Soc. 2019, 100, 1315–1328. [Google Scholar] [CrossRef]
- Rickenbach, T.M.; Nieto-Ferreira, R.; Zarzar, C.; Nelson, B. A seasonal and diurnal climatology of precipitation organization in the southeastern United States. Q. J. R. Meteorol. Soc. 2015, 141, 1938–1956. [Google Scholar] [CrossRef]
- Rickenbach, T.M.; Ferreira, R.N.; Wells, H. Springtime Onset of Isolated Convection Precipitation across the Southeastern United States: Framework and Regional Evolution. Mon. Weather Rev. 2020, 148, 891–906. [Google Scholar] [CrossRef]
- Zishka, K.M.; Smith, P.J. The Climatology of Cyclones and Anticyclones over North America and Surrounding Ocean Environs for January and July 1950–1977. Mon. Weather Rev. 1980, 108, 387–401. [Google Scholar] [CrossRef] [Green Version]
- Nieto Ferreira, R.; Earl Hall, L. Midlatitude cyclones in the southeastern United States: Frequency and structure differences by cyclogenesis region. Int. J. Climatol. 2015, 35, 3798–3811. [Google Scholar] [CrossRef]
- Ferreira, R.N.; Hall, L.; Rickenbach, T.M. A Climatology of the Structure, Evolution, and Propagation of Midlatitude Cyclones in the Southeast United States. J. Climate 2013, 26, 8406–8421. [Google Scholar] [CrossRef]
- Henderson, K.G.; Vega, A.J. Regional precipitation variability in the southern United States. Null 1996, 17, 93–112. [Google Scholar] [CrossRef]
- Li, L.; Li, W.; Kushnir, Y. Variation of the North Atlantic subtropical high western ridge and its implication to Southeastern US summer precipitation. Clim. Dyn. 2012, 39, 1401–1412. [Google Scholar] [CrossRef] [Green Version]
- Nieto Ferreira, R.; Rickenbach, T.M. Effects of the North Atlantic Subtropical High on summertime precipitation organization in the southeast United States. Int. J. Climatol. 2020. [Google Scholar] [CrossRef]
- Zhu, J.; Liang, X. Impacts of the Bermuda High on Regional Climate and Ozone over the United States. J. Clim. 2013, 26, 1018–1032. [Google Scholar] [CrossRef]
- Catto, J.L.; Jakob, C.; Berry, G.; Nicholls, N. Relating global precipitation to atmospheric fronts. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Koch, P.; Wernli, H.; Davies, H.C. An event-based jet-stream climatology and typology. Int. J. Climatol. 2006, 26, 283–301. [Google Scholar] [CrossRef]
- Thorncroft, C.D.; Hoskins, B.J.; McIntyre, M.E. Two paradigms of baroclinic-wave life-cycle behaviour. Q. J. R. Meteorol. Soc. 1993, 119, 17–55. [Google Scholar] [CrossRef]
- Postel, G.A.; Hitchman, M.H. A Climatology of Rossby Wave Breaking along the Subtropical Tropopause. J. Atmos. Sci. 1999, 56, 359–373. [Google Scholar] [CrossRef]
- Zavadoff, B.L.; Kirtman, B.P. North Atlantic Summertime Anticyclonic Rossby Wave Breaking: Climatology, Impacts, and Connections to the Pacific Decadal Oscillation. J. Clim. 2019, 32, 485–500. [Google Scholar] [CrossRef]
- Abatzoglou, J.T. Contribution of Cutoff Lows to Precipitation across the United States. J. Appl. Meteor. Climatol. 2016, 55, 893–899. [Google Scholar] [CrossRef]
- Nieto-Ferreira, R.; Rickenbach, T.M.; Wright, E.A. The role of cold fronts in the onset of the monsoon season in the South Atlantic convergence zone. Q. J. R. Meteorol. Soc. 2011, 137, 908–922. [Google Scholar] [CrossRef]
- Yihui, D.; Chan, J.C.L. The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 2005, 89, 117–142. [Google Scholar] [CrossRef]
- Davis, R.E.; Hayden, B.P.; Gay, D.A.; Phillips, W.L.; Jones, G.V. The North Atlantic Subtropical Anticyclone. J. Clim. 1997, 10, 728–744. [Google Scholar] [CrossRef]
- Bishop, D.A.; Williams, A.P.; Seager, R.; Fiore, A.M.; Cook, B.I.; Mankin, J.S.; Singh, D.; Smerdon, J.E.; Rao, M.P. Investigating the Causes of Increased Twentieth-Century Fall Precipitation over the Southeastern United States. J. Clim. 2019, 32, 575–590. [Google Scholar] [CrossRef]
- Wei, W.; Li, W.; Deng, Y.; Yang, S. Intraseasonal variation of the summer rainfall over the Southeastern United States. Clim. Dyn. 2019, 53, 1171–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, D.F.; Grise, K.M. Impacts of Subtropical Highs on Summertime Precipitation in North America. J. Geophys. Res. Atmos. 2019, 124, 11188–11204. [Google Scholar] [CrossRef]
- Diem, J.E. Synoptic-Scale Controls of Summer Precipitation in the Southeastern United States. J. Clim. 2006, 19, 613–621. [Google Scholar] [CrossRef]
- Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.C.; Ebisuzaki, W.; Jović, D.; Woollen, J.; Rogers, E.; Berbery, E.H.; et al. North American Regional Reanalysis. Bull. Amer. Meteor. Soc. 2006, 87, 343–360. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Howard, K.; Langston, C.; Vasiloff, S.; Kaney, B.; Arthur, A.; Van Cooten, S.; Kelleher, K.; Kitzmiller, D.; Ding, F.; et al. National Mosaic and Multi-Sensor QPE (NMQ) System: Description, Results, and Future Plans. Bull. Amer. Meteor. Soc. 2011, 92, 1321–1338. [Google Scholar] [CrossRef] [Green Version]
- Houze, R.A., Jr. Observed structure of mesoscale convective systems and implications for large-scale heating. Q. J. R. Meteorol. Soc. 1989, 115, 425–461. [Google Scholar] [CrossRef]
- Marengo, J.A.; Liebmann, B.; Kousky, V.E.; Filizola, N.P.; Wainer, I.C. Onset and End of the Rainy Season in the Brazilian Amazon Basin. J. Clim. 2001, 14, 833–852. [Google Scholar] [CrossRef] [Green Version]
- Nieto-Ferreira, R.; Rickenbach, T.M. Regionality of monsoon onset in South America: A three-stage conceptual model. Int. J. Climatol. 2011, 31, 1309–1321. [Google Scholar] [CrossRef]
- Staten, P.W.; Lu, J.; Grise, K.M.; Davis, S.M.; Birner, T. Re-examining tropical expansion. Nat. Clim. Chang. 2018, 8, 768–775. [Google Scholar] [CrossRef]
Onset | End | Duration | IPF Rain | |
---|---|---|---|---|
2009 | 25 (1–5 May) | 54 (23–27 September) | 5.0 | 1.44 (216) |
2010 | 28 (16–20 May) | 48 (24–28 August) | 3.5 | 1.93 (202) |
2011 | 30 (26–30 May) | 57 (8–12 October) | 4.7 | 1.17 (163) |
2012 | 26 (6–10 May) | 50 (3–7 September) | 4.2 | 1.5 (187) |
Average | 27 (11–15 May) | 52 (13–17 September) | 4.4 | 1.45 (192) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, R.N.; Rickenbach, T.M. Mechanisms for Springtime Onset of Isolated Precipitation across the Southeastern United States. Atmosphere 2021, 12, 213. https://doi.org/10.3390/atmos12020213
Ferreira RN, Rickenbach TM. Mechanisms for Springtime Onset of Isolated Precipitation across the Southeastern United States. Atmosphere. 2021; 12(2):213. https://doi.org/10.3390/atmos12020213
Chicago/Turabian StyleFerreira, Rosana Nieto, and Thomas M. Rickenbach. 2021. "Mechanisms for Springtime Onset of Isolated Precipitation across the Southeastern United States" Atmosphere 12, no. 2: 213. https://doi.org/10.3390/atmos12020213
APA StyleFerreira, R. N., & Rickenbach, T. M. (2021). Mechanisms for Springtime Onset of Isolated Precipitation across the Southeastern United States. Atmosphere, 12(2), 213. https://doi.org/10.3390/atmos12020213