Multi-Scale Ionospheric Anomalies Monitoring and Spatio-Temporal Analysis during Intense Storm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and GNSS-Derived TEC
2.2. Computerized Ionospheric Tomography
2.3. 3D IED Model Reconstruction
2.4. Ionospheric Disturbance Index
3. Results
3.1. Geomagnetic Storm on 17 March 2015
3.2. TEC Response to the Storm
3.2.1. Regional STEC Variations
3.2.2. Single-Station VTEC Variations
3.3. Analysis of the ROTI during the Storm
3.4. 3D IED Response to the Storm
4. Conclusions
- To characterize the variation of the ionosphere during this storm, GNSS observations from the CMONOC are applied to derive TEC and the ROTI, and reconstruct the 3D ionospheric model. The multi-scale ionospheric anomalies’ monitoring over China in terms of TEC and 3D IED are realized, and the results are consistent. This study also reveals the response and variations in regional ionosphere scintillation. The analysis of the ROTI proves that the storm suppressed the occurrence of the ionospheric scintillation and ionospheric scintillations accompanied by TEC depletions. Specifically, the contribution of the CMONOC observations to ionospheric anomalies’ monitoring must be considered in China.
- For the purpose of determining the effects of this storm on the ionosphere at a 3D scale, the 3D IED is reconstructed by the CIT technique. With respect to the timeliness of modeling, OpenMP parallelization processing is adopted to raise the efficiency in reconstructing the 3D IED model. It can be adopted to achieve the regional-scale or global-scale 3D IED products in near real time on our platform.
- Based on the reconstructed 3D IED, it consequently reveals the spatial-temporal dynamics of ionospheric anomalies in detail during the severe geomagnetic storm. The magnetic storm was accompanied by a positive phase and a negative phase ionospheric storm. A significant decrease of IED occurred during the recovery phase of the storm, and it totally affected the ionosphere over most parts of China, which is consistent with the results for TEC. Moreover, the IED varied with latitude and altitude dramatically; the maximum IED decreased, and the area where IEDs are maximum moved southward.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, Y.; Liu, L.; Kong, J.; Zhai, C. Analysis of the global ionospheric disturbances of the March 2015 great storm. J. Geophys. Res. Space Phys. 2016, 121, 157–170. [Google Scholar] [CrossRef]
- Jin, S.; Jin, R.; Li, J.H. Pattern and evolution of seismo-ionospheric disturbances following the 2011 Tohoku earthquakes from GPS observations. J. Geophys. Res. Space Phys. 2014, 119, 7914–7927. [Google Scholar] [CrossRef] [Green Version]
- Dymond, K.F.; Budzien, S.A.; Nicholas, A.C.; Thonnard, S.E.; Joyce, G. Ionospheric response to the solar flare of 14 July 2000. Radio Sci. 2004, 39. [Google Scholar] [CrossRef] [Green Version]
- Kelley, M.C.; Makela, J.J.; Odile de La, B.; Retterer, J. Convective ionospheric storms: A review. Rev. Geophys. 2011, 49. [Google Scholar] [CrossRef]
- Mao, T.; Sun, L.; Hu, L. A case study of ionospheric storm effects in the Chinese sector during the October 2013 geomagnetic storm. Adv. Space Res. 2015, 56, 2030–2039. [Google Scholar] [CrossRef]
- Jiang, C.; Yang, G.; Liu, J.; Yokoyama, T.; Liu, T.; Lan, T. Equatorial and low-latitude ionospheric response to the 17-18 march 2015 great storm over Southeast Asia longitude sector. J. Geophys. Res. Space Phys. 2017, 122, 5756–5767. [Google Scholar] [CrossRef]
- Nava, B.; Rodríguez-Zuluaga, J.; Alazo-Cuartas, K.; Kashcheyev, A.; Migoya-Orué, Y.; Radicella, S.M.; Amory-Mazaudier, C.; Fleury, R. Middle- and low- latitude ionosphere response to 2015 St. Patrick’s Day geomagnetic storm. J. Geophys. Res. Space Phys. 2016, 121, 3421–3438. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, W.; Burns, A.; Yue, X.; Zhang, S.; Zhang, Y. Profiles of ionospheric storm-enhanced density during the 17 March 2015 great storm. J. Geophys. Res. Space Phys. 2016, 121, 727–744. [Google Scholar] [CrossRef]
- Jiao, Y.; Morton, Y.T. Comparison of the effect of high-latitude and equatorial ionospheric scintillation on GPS signals during the maximum of solar cycle 24. Radio Sci. 2015, 50, 886–903. [Google Scholar] [CrossRef]
- Yang, Y.; Li, X. Micro-PNT and Comprehensive PNT. Acta Geod. Cartogr. Sin. 2017, 46, 1249. [Google Scholar]
- Song, S.; Cheng, N.; Xie, H.; Zhou, W. Adaptability of GPS/BDS Broadcast Ionospheric Models to Solar Activities. Adv. Space Res. 2019, 63. [Google Scholar] [CrossRef]
- Cheng, N.; Song, S.; Xie, H. Investigation of Solar Flares Impact on GPS/BDS/GALILEO Broadcast Ionospheric Models. Radio Sci. 2018. [Google Scholar] [CrossRef]
- Aarons, J.; Whitney, H.E.; Allen, R.S. Global morphology of ionospheric scintillations. Proc. IEEE 1971, 59, 159–172. [Google Scholar] [CrossRef]
- Kintner, P.M.; Ledvina, B.M.; Paula, E.R. GPS and ionospheric scintillations. Space Weather 2007, 5. [Google Scholar] [CrossRef]
- Nicola, L.; Alex, M.; Fabio, D.; Luca, S. Effects of Phase Scintillation on the GNSS Positioning Error During the September 2017 Storm at Svalbard. Space Weather 2018, 16. [Google Scholar] [CrossRef]
- Pi, X.; Mannucci, A.J.; Lindqwister, U.J.; Ho, C.M. Monitoring of global ionospheric irregularities using the Worldwide GPS Network. Geophys. Res. Lett. 1997, 24, 2283–2286. [Google Scholar] [CrossRef]
- Mannucci, A.J.; Wilson, B.D.; Yuan, D.N.; Ho, C.M.; Lindqwister, U.J. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci. 1998, 33, 565–582. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, L.; Kong, J.; Zhai, C. Global ionospheric modeling based on multi-GNSS, satellite altimetry, and Formosat-3/COSMIC data. GPS Solut. 2018, 22, 104. [Google Scholar] [CrossRef]
- Li, Z.; Wang, N.; Wang, L.; Liu, A.; Zhang, K. Regional ionospheric TEC modeling based on a two-layer spherical harmonic approximation for real-time single-frequency PPP. J. Geod. 2019, 93. [Google Scholar] [CrossRef]
- Schaer, S. Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System. Geod. Geophys. Arb. 1999, 59. [Google Scholar]
- Tang, J.; Yao, Y.; Zhang, L.; Kong, J. Tomographic reconstruction of ionospheric electron density during the storm of 5–6 August 2011 using multi-source data. Sci. Rep. 2015, 5, 13042. [Google Scholar] [CrossRef] [Green Version]
- Pinto Jayawardena, T.S.; Chartier, A.T.; Spencer, P.; Mitchell, C.N. Imaging the topside ionosphere and plasmasphere with ionospheric tomography using COSMIC GPS TEC. J. Geophys. Res. Space Phys. 2016, 121, 817–831. [Google Scholar] [CrossRef]
- Wen, D.; Liu, S.; Tang, P. Tomographic reconstruction of ionospheric electron density based on constrained algebraic reconstruction technique. GPS Solut. 2010, 14, 375–380. [Google Scholar] [CrossRef]
- Yuan, Y.; Dang, Y.; Cheng, Y.; Zhou, G. Turboedit algorithm and its improvements in ubdifferentiated phase data preprocessing. J. Geod. Geodyn. 2009, 29, 109–113. [Google Scholar] [CrossRef]
- Bilitza, D.; Altadill, D.; Truhlik, V.; Shubin, V.; Galkin, I.; Reinisch, B. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather 2017, 15, 418–429. [Google Scholar] [CrossRef]
- Raymund, T.D.; Austen, J.R.; Franke, S.J.; Liu, C.H.; Klobuchar, J.A.; Stalker, J. Application of computerized tomography to the investigation of ionospheric structures. Radio Sci. 1990, 25, 771–789. [Google Scholar] [CrossRef]
- Pignalberi, A.; Pietrella, M.; Pezzopane, M.; Habarulema, J.B. Investigating different vTEC calibration methods for data assimilation in ionospheric empirical models. Adv. Space Res. 2020. [Google Scholar] [CrossRef]
- Wernik, A.W.; Secan, J.A.; Fremouw, E.J. Ionospheric Irregularities and Scintillation. Adv. Space Res. 2003, 31, 971–981. [Google Scholar] [CrossRef]
- Cherniak, I.; Krankowski, A.; Zakharenkova, I. Observation of the ionospheric irregularities over the Northern Hemisphere: Methodology and service. Radio Sci. 2014, 49, 653–662. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Z.J. Correlation between ROTI and Ionospheric Scintillation Indices using Hong Kong low-latitude GPS data. GPS Solut. 2016, 20, 815–824. [Google Scholar] [CrossRef]
- Wanliss, J.A.; Showalter, K.M. High-resolution global storm index: Dst versus SYM-H. J. Geophys. Res. Space Phys. 2006, 111. [Google Scholar] [CrossRef]
- Alberti, T.; Lekscha, J.; Consolini, G.; Michelis, P.D.; Donner, R.V. Disentangling nonlinear geomagnetic variability during magnetic storms and quiescence by timescale dependent recurrence properties. J. Space Weather Space Clim. 2020, 10. [Google Scholar] [CrossRef]
- Maski, K.; Vijay, S.K. Analytical study of nighttime scintillations using GPS at low latitude station Bhopal. In Proceedings of the International Conference on Emerging Interfaces of Plasma Science & Technology, Ujjain, India, 9–10 March 2015. [Google Scholar] [CrossRef]
- Seif, A.; Abdullah, M.; Hasbi, A.M.; Zou, Y. Investigation of ionospheric scintillation at UKM station, Malaysia during low solar activity. Acta Astronaut. 2012, 81. [Google Scholar] [CrossRef]
- Ma, G.; Maruyama, T. A super bubble detected by dense GPS network at east Asian longitudes. Geophys. Res. Lett. 2006, 33, L21103. [Google Scholar] [CrossRef]
- Sun, W.; Ning, B.; Zhao, B. Analysis of ionospheric features in middle and low latitude region of China during the geomagnetic storm in March 2015. Chin. J. Geophys. 2017, 60, 1–10. [Google Scholar] [CrossRef]
- Kamide, Y.; Kokubun, S. Two-component auroral electrojet: Importance for substorm studies. J. Geophys. Res. Atmos. 1996, 101, 13027–13046. [Google Scholar] [CrossRef]
Items | Strategies |
---|---|
Size | regional-scale |
Grid interval | (latitude) × (longitude) × 20 km (altitude) |
Time interval | 1 h |
Initial IED value | IRI-2016 model |
Derived TEC | dual-frequency GNSS observation (Section 2.1) |
Grid distance calculation | three-dimensional ray-tracing |
Reconstruction algorithm | MART |
Parallel process | OpenMP |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, N.; Song, S.; Li, W. Multi-Scale Ionospheric Anomalies Monitoring and Spatio-Temporal Analysis during Intense Storm. Atmosphere 2021, 12, 215. https://doi.org/10.3390/atmos12020215
Cheng N, Song S, Li W. Multi-Scale Ionospheric Anomalies Monitoring and Spatio-Temporal Analysis during Intense Storm. Atmosphere. 2021; 12(2):215. https://doi.org/10.3390/atmos12020215
Chicago/Turabian StyleCheng, Na, Shuli Song, and Wei Li. 2021. "Multi-Scale Ionospheric Anomalies Monitoring and Spatio-Temporal Analysis during Intense Storm" Atmosphere 12, no. 2: 215. https://doi.org/10.3390/atmos12020215
APA StyleCheng, N., Song, S., & Li, W. (2021). Multi-Scale Ionospheric Anomalies Monitoring and Spatio-Temporal Analysis during Intense Storm. Atmosphere, 12(2), 215. https://doi.org/10.3390/atmos12020215