Understanding Spatial Variability of NO2 in Urban Areas Using Spatial Modelling and Data Fusion Approaches
Abstract
:1. Introduction
2. Methodology
2.1. Brief Description of the Study Area
2.2. Air Quality Monitoring Network (AQMN) in Sheffield
2.3. NO2 Map Estimated by Airviro
2.4. NO2 Map Estimated by LUR
2.5. Kriging and Universal Kriging
2.6. Model Validation
3. Results and Discussion
3.1. Measured and Interpolated NO2 Concentrations
3.2. Data Fusion—Fusing Model Estimations with Measured Concentrations
3.2.1. Fusion of NO2-LCS with NO2-Airviro and NO2-LUR
3.2.2. Fusion of NO2-DT with NO2-Airviro and NO2-LUR
3.2.3. Fusion of NO2-DTLCS with NO2-Airviro and NO2-LUR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Public Health England. Guidance, Air pollution: Applying All Our Health. 2020. Available online: https://www.gov.uk/government/publications/air-pollution-applying-all-our-health/air-pollution-applying-all-our-health (accessed on 19 January 2021).
- Fan, Z.; Pun, V.C.; Chen, X.C.; Hong, Q.; Tian, L.; Ho, S.S.H.; Lee, S.C.; Tse, L.A.; Ho, K.F. Personal exposure to fine particles (PM2.5) and respiratory inflammation of common residents in Hong Kong. Environ. Res. 2018, 164, 24–31. [Google Scholar] [CrossRef]
- WHO. Review of Evidence on Health Aspects of Air Pollution-REVIHAAP Project: Final Technical Report. World Health Organziation Regional Office for Europe. 2013. Available online: https://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report-final-version.pdf (accessed on 28 January 2021).
- Landrigan, P.J. Air pollution and health. Lancet Public Health 2016, 2, 4–5. [Google Scholar] [CrossRef] [Green Version]
- DEFRA. Improving Air Quality in the UK Tackling Nitrogen Dioxide in Our Towns and Cities, UK Overview Document, December 2015. Available online: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/486636/aq-plan-2015-overview-document.pdf (accessed on 9 April 2020).
- Xie, X.; Semanjski, I.; Gautama, S.; Tsiligianni, E.; Deligiannis, N.; Rajan, R.T.; Pasveer, F.; Philips, W. A Review of Urban Air Pollution Monitoring and Exposure Assessment Methods. ISPRS Int. J. Geo. inf. 2017, 6, 389. [Google Scholar] [CrossRef] [Green Version]
- Briggs, D.J. The Role of GIS: Coping with Space (And Time) in Air Pollution Exposure Assessment. J. Toxicol. Environ. Health 2005, 68, 1243–1261. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.; Stein, A. Comparison of Kriging with External Drift and Regression-Kriging; ITC Technical note; International Institute for Geo-Information Science and Earth Observation (ITC): Enschede, The Netherlands, 2003. [Google Scholar]
- Schneider, P.; Castell, N.; Vogt, M.; Dauge, F.R.; Lahoz, W.A.; Bartonova, A. Mapping urban air quality in near real-time using observations from lowcost sensors and model information. Environ. Int. 2017, 106, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Briggs, D.J.; de Hough, C.; Gulliver, J.; Wills, J.; Elliott, P.; Kingham, S.; Smallbone, K. A regression-based method for mapping traffic-related air pollution: Application and testing in four contrasting urban environments. Sci. Total Environ. 2000, 253, 151–167. [Google Scholar] [CrossRef]
- Castanedo, F. A Review of Data Fusion Techniques. Sci. World J. 2013, 2013, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Munir, S.; Mayfield, M.; Coca, D.; Mihaylova, L.S. A nonlinear land-use regression approach for modelling NO2 concentrations in urban areas—Using data from low-cost sensors and diffusion tubes. Atmosphere 2020, 11, 736. [Google Scholar] [CrossRef]
- Munir, S.; Mayfield, M.; Coca, D.; Mihaylova, L.S.; Osammor, O. Analysis of air pollution in urban areas with Airviro dispersion model—A Case Study in the City of Sheffield, United Kingdom. Atmosphere 2020, 11, 285. [Google Scholar] [CrossRef] [Green Version]
- Hiemstra, P. Automatic Interpolation Package. “Automap”, Version 1.0-14, a Package for R Programming Language. 2015. Available online: https://cran.r-project.org/web/packages/automap/automap.pdf (accessed on 28 January 2021).
- Briggs, D.J.; Collins, S.; Elliott, P.; Fischer, P.; Kingham, S.; Lebret, E.; Pryl, K.; van Reeuwijk, H.; Smallbone, K.; van der Veen, A. Mapping urban air pollution using GIS: A regression-based approach. Int. J. Geogr. Inf. Sci. 1997, 11, 699–718. [Google Scholar] [CrossRef] [Green Version]
- Beelen, R.; Hoek, G.; Fischer, P.; van den Brandt, P.A.; Brunekreef, B. Estimated long-term outdoor air pollution concentrations in a cohort study. Atmos. Environ. 2007, 41, 1343–1358. [Google Scholar] [CrossRef]
- Eeftens, M.; Beelen, R.; de Hoogh, K. Development of land use regression models for PM2.5, PM2.5 absorbance, PM10 and PM coarse in 20 European Study areas; results of the ESCAPE project. Environ. Sci. Technol. 2012, 46, 11195–11205. [Google Scholar] [CrossRef] [PubMed]
- Hoek, G.; Beelen, R.; De Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 2008, 42, 7561–7578. [Google Scholar] [CrossRef]
- Lee, J.-H.; Wu, C.-F.; Hoek, G.; De Hoogh, K.; Beelen, R.; Brunekreef, B.; Chan, C.-C. Land use regression models for estimating individual NOx and NO2 exposures in a metropolis with a high density of traffic roads and population. Sci. Total. Environ. 2014, 472, 1163–1171. [Google Scholar] [CrossRef]
- Muttoo, S.; Ramsay, L.; Brunekreef, B.; Beelen, R.; Meliefste, K.; Naidoo, R.N. Land use regression modelling estimating nitrogen oxides exposure in industrial south Durban, South Africa. Sci. Total Environ. 2017, 610–611, 1439–1447. [Google Scholar] [CrossRef]
- Rahman, M.M.; Yeganeh, B.; Clifford, S.; Knibbs, L.D.; Morawska, L. Development of a land use regression model for daily NO2 and NOx concentrations in the Brisbane metropolitan area, Australia. Environ. Modell. Softw. 2017, 95, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Stedman, J.; Vincent, K.; Campbell, G.; Goodwin, J.; Downing, C. New high resolution maps of estimated background ambient NOx and NO2 concentrations in the U.K. Atmos. Environ. 1997, 31, 3591–3602. [Google Scholar] [CrossRef]
- Ryan, P.H.; LeMasters, G.K.; Biswas, P.; Levin, L.; Hu, S.; Lindsey, M.; Bernstein, D.I.; Lockey, J.; Villareal, M.; Hershey, G.K.K.; et al. A comparison of proximity and land use regression traffic exposure models and wheezing in infants. Environ. Health Perspect. 2007, 115, 278–284. [Google Scholar] [CrossRef] [Green Version]
- Ryan, P.H.; LeMasters, G.K. A review of land-use regressionmodels for characterizing intraurban air pollution exposure. Inhal. Toxicol. 2007, 19 (Suppl. 1), 127–133. [Google Scholar] [CrossRef] [Green Version]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Applied Geostatistics Series; Oxford University Press: Oxford, UK, 1997; ISBN 0-19-511538-4. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 28 January 2021).
- Denby, B.; Garcia, V.; Holland, D.M.; Hogrege, C. Integration of air quality modeling and monitoring data for enhanced health exposure assessment. Air Waste Manag. Assoc. 2009, 10, 46–49. [Google Scholar]
- Huang, R.; Zhai, X.; Ivey, C.E.; Friberg, M.D.; Hu, X. Using Air Quality Model-Data Fusion Methods for Developing Air Pollutant Exposure Fields and Comparison with Satellite AOD-Derived Fields: Application over North Carolina, USA. In Air Pollution Modeling and Its Application XXV; Mensink, C., Kallos, G., Eds.; Springer Proceedings in Complexity Book Series; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Gressent, A.; Malherbe, L.; Colette, A.; Rollin, H.; Scimia, R. Data fusion for air quality mapping using low-cost sensor observations: Feasibility and added-value. Environ. Int. 2020, 143, 105965. [Google Scholar] [CrossRef] [PubMed]
- Slordal, L.H.; Walker, S.E.; Solberg, S.S. The Urban Air Dispersion Model EPISODE Applied in AirQUIS 2003—Technical Description; NILU—Norwegian Institute for Air Research: Kjeller, Norway, 2003. [Google Scholar]
- Liang, F.; Gao, M.; Xiao, Q.; Carmichael, G.R.; Pan, X.; Liu, Y. Evaluation of a data fusion approach to estimate daily PM2.5 levels in North China. Environ. Res. 2017, 158, 54–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaddick, G.; Thomas, M.L.; Green, A.; Brauer, M.; van-Donkelaar, A.; Burnett, R. Data integration model for air quality: A hierarchical approach to the global estimation of exposures to ambient air pollution. J. R. Stat. Soc. Ser. Appl. Stat. 2018, 67, 231–253. [Google Scholar] [CrossRef]
Metrics | DT NO2 | AURN | SCC | AQMesh/Envirowatch E-MOTE |
---|---|---|---|---|
Minimum | 13.58 | 19.09 | 8.12 | 12.69 |
1st Quartile | 28.29 | 21.00 | 24.05 | 25.08 |
Median | 33.77 | 22.90 | 24.62 | 34.23 |
Mean | 34.23 | 24.69 | 21.53 | 38.70 |
3rd Quartile | 40.00 | 27.50 | 25.02 | 42.36 |
Maximum | 91.75 | 32.09 | 25.86 | 136.81 |
Standard Deviation | 9.65 | 6.68 | 7.53 | 27.69 |
Number of Sensors | 188 | 3 | 5 | 41 |
Metrics | Airviro-LCS | LUR-LCS | Airviro-DT | LUR-DT | Airviro-DTLCS | LUR-DTLCS |
---|---|---|---|---|---|---|
FAC2 | 1 | 1 | 1 | 1 | 0.98 | 0.96 |
MBE | −4.14 | 1.44 | 1.56 | 1.40 | 1.08 | 2.24 |
MAE | 12.79 | 7.99 | 5.81 | 5.29 | 8.20 | 3.73 |
RMSE | 18.16 | 9.09 | 7.18 | 6.74 | 10.42 | 10.43 |
R | 0.88 | 0.96 | 0.70 | 0.70 | 0.56 | 0.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munir, S.; Mayfield, M.; Coca, D. Understanding Spatial Variability of NO2 in Urban Areas Using Spatial Modelling and Data Fusion Approaches. Atmosphere 2021, 12, 179. https://doi.org/10.3390/atmos12020179
Munir S, Mayfield M, Coca D. Understanding Spatial Variability of NO2 in Urban Areas Using Spatial Modelling and Data Fusion Approaches. Atmosphere. 2021; 12(2):179. https://doi.org/10.3390/atmos12020179
Chicago/Turabian StyleMunir, Said, Martin Mayfield, and Daniel Coca. 2021. "Understanding Spatial Variability of NO2 in Urban Areas Using Spatial Modelling and Data Fusion Approaches" Atmosphere 12, no. 2: 179. https://doi.org/10.3390/atmos12020179
APA StyleMunir, S., Mayfield, M., & Coca, D. (2021). Understanding Spatial Variability of NO2 in Urban Areas Using Spatial Modelling and Data Fusion Approaches. Atmosphere, 12(2), 179. https://doi.org/10.3390/atmos12020179