Emissions and Air Quality Implications of Upstream and Midstream Oil and Gas Operations in Mexico
Abstract
:1. Introduction
2. Methods
2.1. Upstream Emissions
2.2. Midstream Emissions
2.3. Air Quality Modeling Configuration
3. Results and Discussion
3.1. Base Year Emissions Profiles
3.2. Intercomparison of Emission Source Contributions
3.3. Improving Contemporary Inventories
4. Air Quality Impacts and Implications of Future Development
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- British Petroleum. BP Statistical Review of World Energy 2021, Consolidated Dataset. Available online: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/downloads.html (accessed on 8 November 2021).
- Wood, D.; Martin, J. Of Paradigm shifts and political conflict: The history of Mexico’s second energy revolution. In Mexico’s New Energy Reform; Wood, D., Ed.; Wilson Center Mexico Institute: Washington, DC, USA, 2018; pp. 17–35. [Google Scholar]
- Sanchez, G.J.G. The fine print of the Mexican energy reform. In Mexico’s New Energy Reform; Wood, D., Ed.; Wilson Center Mexico Institute: Washington, DC, USA, 2018; pp. 36–52. [Google Scholar]
- OECD/IEA. Energy Policies Beyond IEA Countries: Mexico 2017. Paris, 2017. Available online: https://www.iea.org/reports/energy-policies-beyond-iea-countries-mexico-2017 (accessed on 8 March 2018).
- National Hydrocarbons Commission. Rondas Mexico Web Portal. Available online: https://rondasmexico.gob.mx (accessed on 29 July 2021).
- International Trade Administration, U.S. Department of Commerce. Mexico—Country Commercial Guide: Oil and Gas. Available online: https://www.trade.gov/country-commercial-guides/mexico-oil-and-gas (accessed on 8 November 2021).
- Gross, S. AMLO Reverses Positive Trends in Mexico’s Energy Industry, Brookings Institution, 20 December 2019. Available online: https://www.brookings.edu/blog/order-from-chaos/2019/12/20/amlo-reverses-positive-trends-in-mexicos-energy-industry/ (accessed on 15 January 2020).
- IEA. Oil 2021 Analysis and Forecast to 2026. Available online: https://www.iea.org/reports/oil-2021 (accessed on 4 November 2021).
- Ministry of Environment and Natural Resources (SEMARNAT) and National Institute of Ecology and Climate Change (INECC). Nationally Determined Contributions; 2020 Update; SEMARNAT: Mexico City, Mexico; INECC: Mexico City, Mexico, 2020. [Google Scholar]
- Diario Oficial de la Federación. Disposiciones Administrativas de Carácter General Que Establecen Los Lineamientos Para La Prevención y El Control Integral de las Emisiones de Metano del Sector Hidrocarburos. 2018. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5543033&fecha=06/11/2018 (accessed on 8 February 2021).
- European Commission. Launch by United States, the European Union, and Partners of the Global Methane Pledge to Keep 1.5C Within Reach. Available online: https://ec.europa.eu/commission/presscorner/detail/en/statement_21_5766 (accessed on 4 November 2021).
- Michanowicz, D.R.; Lebel, E.D.; Domen, J.K.; Hill, L.A.L.; Jaeger, J.M.; Schiff, J.E.; Krieger, E.M.; Banan, Z.; Goldman, J.S.W.; Nordgaard, C.L.; et al. Methane and Health-Damaging Air Pollutants from the Oil and Gas Sector: Bridging 10 Years of Scientific Understanding; PSE Technical Report; PSE: Oakland, CA, USA, 2021. [Google Scholar]
- Francoeur, C.B.; McDonald, B.C.; Gilman, J.B.; Zarzana, K.J.; Dix, B.; Brown, S.S.; de Gouw, J.A.; Frost, G.J.; Li, M.; McKeen, S.A.; et al. Quantifying Methane and Ozone Precursor Emissions from Oil and Gas Production Regions across the Contiguous US. Environ. Sci. Technol. 2021, 55, 9129–9139. [Google Scholar] [CrossRef] [PubMed]
- Kemball-Cook, S.; Bar-Ilan, A.; Grant, J.; Parker, L.; Jung, J.; Santamaria, W.; Mathews, J.; Yarwood, G. Ozone impacts of natural gas development in the Haynesville Shale. Environ. Sci. Technol. 2010, 44, 9357–9363. [Google Scholar] [CrossRef] [PubMed]
- Thompson, T.M.; Shepherd, S.; Stacy, A.; Barna, M.G.; Schichtel, B.A. Modeling to Evaluate Contribution of Oil and Gas Emissions to Air Pollution. J. Air Waste Manag. Assoc. 2017, 67, 445–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, M.A.; Barna, M.G.; Moore, T. Regional Impacts of Oil and Gas Development on Ozone Formation in the Western United States. J. Air Waste Manag. Assoc. 2009, 59, 1111–1118. [Google Scholar] [CrossRef] [Green Version]
- USEPA. Integrated Science Assessment (ISA) for Oxides of Nitrogen—Health Criteria (Final Report, 2016); EPA/600/R-15/068, 2016; U.S. Environmental Protection Agency: Washington, DC, USA, 2016. [Google Scholar]
- USEPA. Integrated Science Assessment (ISA) for Sulfur Oxides—Health Criteria (Final Report, 2017); EPA/600/R-17/451, 2017; U.S. Environmental Protection Agency: Washington, DC, USA, 2017. [Google Scholar]
- USEPA. Integrated Science Assessment (ISA) for Carbon Monoxide (Final Report, 2010); EPA/600/R-09/019F; U.S. Environmental Protection Agency: Washington, DC, USA, 2010. [Google Scholar]
- USEPA. Integrated Science Assessment (ISA) for Particulate Matter (Final Report, 2019); EPA/600/R-19/188; U.S. Environmental Protection Agency: Washington, DC, USA, 2019. [Google Scholar]
- USEPA. Integrated Science Assessment (ISA) for Oxides of Nitrogen, Oxides of Sulfur and Particulate Matter Ecological Criteria (Final Report, 2020); EPA/600/R-20/278; U.S. Environmental Protection Agency: Washington, DC, USA, 2020. [Google Scholar]
- USEPA. Integrated Science Assessment (ISA) for Ozone and Related Photochemical Oxidants (Final Report, April 2020); EPA/600/R-20/012; U.S. Environmental Protection Agency: Washington, DC, USA, 2020. [Google Scholar]
- Gonzalez, D.J.X.; Sherris, A.R.; Yang, W.; Stevenson, D.K.; Padulac, A.M.; Baiocchi, M.; Burkee, M.; Cullen, M.R.; Shaw, G.M. Oil and gas production and spontaneous preterm births in the San Joaquin Valley, CA. Environ. Epidemiol. 2020, 4, e099. [Google Scholar] [CrossRef]
- Johnston, J.E.; Limb, E.; Ro, H. Impact of upstream oil extraction and environmental public health: A review of the evidence. Sci. Total Environ. 2019, 657, 187–199. [Google Scholar] [CrossRef]
- McKenzie, L.M.; Blair, B.; Hughes, J.; Allshouse, W.B.; Blake, N.J.; Helmig, D.; Milmoe, P.; Halliday, H.; Blake, D.R.; Adgate, J.L. Ambient Nonmethane Hydrocarbon Levels Along Colorado’s Northern Front Range: Acute and Chronic Health Risks. Environ. Sci. Technol. 2018, 52, 4514–4525. [Google Scholar] [CrossRef]
- McKenzie, L.M.; Crooks, J.; Peel, J.L.; Blair, B.D.; Brindley, S.; Allshouse, W.B.; Malin, S.; Adgate, J.L. Relationships between indicators of cardiovascular disease and intensity of oil and natural gas activity in Northeastern Colorado. Environ. Res. 2019, 170, 56–64. [Google Scholar] [CrossRef]
- Garcia-Gonzales, D.A.; Shonkoff, S.B.C.; Hays, J.; Jerrett, M. Hazardous Air Pollutants Associated with Upstream Oil and Natural Gas Development: A Critical Synthesis of Current Peer-Reviewed Literature. Annu. Rev. Public Health 2019, 40, 283–304. [Google Scholar] [CrossRef] [Green Version]
- Webb, E.; Hays, J.; Dyrszka, L.; Rodriguez, B.; Cox, C.; Huffling, K.; Bushkin-Bedient, S. Potential hazards of air pollutant emissions from unconventional oil and natural gas operations on the respiratory health of children and infants. Rev. Environ. Health 2016, 31, 225–243. [Google Scholar] [CrossRef]
- Tran, K.V.; Casey, J.A.; Cushing, L.J.; Morello-Frosch, R. Residential Proximity to Oil and Gas Development and Birth Outcomes in California: A Retrospective Cohort Study of 2006–2015 Births. Environ. Health Perspect. 2020, 128, 67001. [Google Scholar] [CrossRef]
- Willis, M.D.; Hill, E.L.; Boslett, A.; Kile, M.L.; Carozza, S.E.; Hystad, P. Associations between Residential Proximity to Oil and Gas Drilling and Term Birth Weight and Small-for-Gestational-Age Infants in Texas: A Difference-in-Differences Analysis. Environ. Health Perspect. 2021, 129, 077002. [Google Scholar] [CrossRef]
- Gamboa, R.T.; Gamboa, A.R.; Bravo, A.H.; Ostrosky, W.P. Genotoxicity in child populations exposed to polycyclic aromatic hydrocarbons (PAHs) in the air from Tabasco, Mexico. Int. J. Environ. Res. Public Health 2008, 5, 349–355. [Google Scholar] [CrossRef] [Green Version]
- Nwosisi, C.; Oguntoke, O.; Taiwo, A.M.; Agbozu, I.E.; Noragbon, E.J. Spatial patterns of gas flaring stations and the risk to the respiratory and dermal health of residents of the Niger Delta, Nigeria. Sci. Afr. 2021, 12, e00762. [Google Scholar] [CrossRef]
- Shamasunder, B.; Collier-Oxandale, A.; Blickley, J.; Sadd, J.; Chan, M.; Navarro, S.; Hannigan, M.; Wong, N.J. Community-Based Health and Exposure Study around Urban Oil Developments in South Los Angeles. Int. J. Environ. Res. Public Health 2018, 15, 138. [Google Scholar] [CrossRef] [Green Version]
- Villaseñor, R.; Magdaleno, M.; Quintanar, A.; Gallardo, J.C.; López, M.T.; Jurado, R.; Miranda, A.; Aguilar, M.; Melgarejo, L.A.; Palmerín, E.; et al. An air quality emission inventory of offshore operations for the exploration and production of petroleum by the Mexican oil industry. Atmos. Environ. 2003, 37, 3713–3729. [Google Scholar] [CrossRef]
- Schifter, I.; González-Macías, C.; Miranda, A.; López-Salinas, E. Air emissions assessment from offshore oil activities in the Sonda de Campeche. Mexico. Environ. Monit. Assess. 2005, 109, 135–145. [Google Scholar] [CrossRef]
- Mendoza-Domínguez, A.; Graniel-Peralta, M. Estimacíon de emisiones a la atmósfera provenientes de quemadores elevados de instalaciones petroleras en la Sonda de Campeche. Ing. Investig. Technol. 2006, 3, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Bauer, M.; Melgar, E.; Villaseñor, R.; Magdaleno, M.; Elizalde, A.; Mar, E.; Ceballos, E.; Yáñez, G.; Martínez, S.; Tavera, L.; et al. Technical-Economical analysis of the environmental impact and corresponding sustainability indicators of the use of natural gas in Mexico. In Proceedings of the 22nd World Gas Conference, Tokyo, Japan, 4 June 2003. [Google Scholar]
- Muriel-García, M.; Cerón-Bretón, R.M.; Cerón-Bretón, J.G. Air pollution in the Gulf of Mexico. Open J. Ecol. 2016, 6, 32–46. [Google Scholar] [CrossRef] [Green Version]
- US EPA. 2016v1 Emissions Modeling Platform. Available online: www.epa.gov/air-emissions-modeling/2016v1-platform (accessed on 4 December 2018).
- National Hydrocarbons Commission Oil and Gas Statistics Dashboard. Available online: https://sih.hidrocarburos.gob.mx/ (accessed on 17 April 2019).
- Sandrea, R. Understanding the Challenges to Mexico’s Oil & Gas Future. Available online: https://eprinc.org/wp-content/uploads/2019/07/Sandrea-Mexico-Paper-July-2019-FINAL-1.pdf (accessed on 24 September 2020).
- Petróleos Mexicanos. Statistical Yearbook. 2016. Available online: https://www.pemex.com/en/investors/publications/Paginas/statistical-yearbook.aspx (accessed on 22 July 2019).
- IEA. The Distribution of U.S. Oil and Natural Gas Wells by Production Rate; Department of Energy: Washington, DC, USA, 2020. [Google Scholar]
- US EPA. National Emission Inventory v2 (NEI 2014v2), 2018a. Available online: https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data (accessed on 8 August 2019).
- US EPA. Oil and Gas Emission Estimation Tool, 2014 NEI v.2.1—Production Activities Module; US EPA: Washington, DC, USA, 2017. [Google Scholar]
- Wilson, D.; Billings, R.; Chang, R.; Enoch, S.; Do, B.; Perez, H.; Sellers, J. Year 2014 Gulfwide Emissions Inventory Study; Eastern Research Group (BOEM Contract M13PC00005): Morrisville, NC, USA, 2017. [Google Scholar]
- Bureau of Ocean and Energy Management Data Center. Available online: https://www.data.boem.gov/Main/Production.aspx (accessed on 19 January 2019).
- Shah, T.; Parker, L.; Grant, J.; Yarwood, G. Modeling Inventories for Mexico and Caribbean Countries to Support Quantitative Analysis of International Transport Impacts on Ozone Design Values and Regional Haze; Ramboll (Texas Commission on Environmental Quality Contract No. 582-15-50417): Novato, CA, USA, 2018. [Google Scholar]
- US EPA. AP-42 Compilation of Emission Factors. Available online: https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emissions-factors (accessed on 25 February 2019).
- Colorado School of Mines Earth Observation Group. VIIRS Nightfire Global Gas Flaring Data Portal. Available online: https://payneinstitute.mines.edu/eog/viirs-nightfire-vnf/ (accessed on 3 July 2020).
- Eastern Research Group. Develop Mexico Future Year Emissions; Eastern Research Group (US EPA Contract No. EP-D-11-006): Sacramento, CA, USA, 2014. [Google Scholar]
- North American Cooperation on Energy Information. Infrastructure Map Natural Gas Processing Plants. Available online: http://nacei.org/#!/maps (accessed on 9 April 2018).
- National Hydrocarbons Commission. Natural Gas Infrastructure Map. Available online: https://mapa.hidrocarburos.gob.mx (accessed on 17 July 2019).
- Secretary of Energy Mexico. Prospectiva de Gas Natural y Gas L.P. 2013–2027. Available online: https://www.gob.mx/cms/uploads/attachment/file/62950/Prospectiva_de_Gas_natural_y_Gas_L.P._2013-2027.pdf (accessed on 17 July 2019).
- Eduardo, D.S. Comercializacion y Distribucion de Gas Natural en Mexico. Ph.D. Thesis, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico, November 2018. [Google Scholar]
- Texas Commission on Environmental Quality. Revisions to the State of Texas Air Quality Implementation Plan for the Control of Regional Haze; Project Number 2019-112-SIP-NR; Texas Commission on Environmental Quality: Austin, TX, USA, 2020. [Google Scholar]
- Ramboll. Comprehensive Air Quality Model with Extensions. Available online: https://www.camx.com (accessed on 5 October 2020).
- McDonald-Buller, E.; McGaughey, G.; Shah, T.; Grant, J.; Kimura, Y.; Yarwood, G. Mexico’s electricity grid and fuel mix: Implications of a fifteen-year planning horizon on emissions and air quality. Environ. Res. Lett. 2021, 16, 074050. [Google Scholar] [CrossRef]
- Crippa, M.; Oreggioni, G.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Lo Vullo, E.; Solazzo, E.; Monforti-Ferrario, F.; Olivier, J.G.J.; Vignati, E. Fossil CO2 and GHG Emissions of all World Countries—2019 Report, EUR 29849 EN; Publications Office of the European Union: Luxembourg, 2019; JRC117610. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Huang, G.; Guizzardi, D.; Koffi, E.; Muntean, M.; Schieberle, C.; Friedrich, R.; Janssens-Maenhout, G. High resolution temporal profiles in the Emissions Database for Global Atmospheric Research (EDGAR). Sci. Data 2019, 7, 1–17. [Google Scholar] [CrossRef]
- Crippa, M.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Dentener, F.; van Aardenne, J.A.; Monni, S.; Doering, U.; Olivier, J.G.J.; Pagliari, V.; et al. Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2. Earth Syst. Sci. Data 2018, 10, 1987–2013. [Google Scholar] [CrossRef] [Green Version]
- Crippa, M.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Oreggioni, G. EDGAR v5.0 Global Air Pollutant Emissions. European Commission, Joint Research Centre (JRC) [Dataset]. 2019. Available online: http://data.europa.eu/89h/377801af-b094-4943-8fdc-f79a7c0c2d19 (accessed on 17 February 2021).
- Zhang, Y.; Gautam, R.; Zavala-Araiza, D.; Jacob, D.; Zhang, R.; Zhu, L.; Sheng, J.-X.; Scarpelli, T. Satellite Observed Changes in Mexico’s Offshore Gas Flaring Activity Linked to Oil/Gas Regulations. Geophys. Res. Lett. 2019, 46, 1879–1888. [Google Scholar] [CrossRef] [Green Version]
- ICF International. Economic Analysis of Methane Emission Reduction Opportunities in the Mexican Oil and Natural Gas Industries; ICF International: Fairfax, VA, USA, 2015; Available online: https://www.edf.org/sites/default/files/content/mexico_methane_cost_curve_report.pdf (accessed on 19 February 2021).
- Fioletov, V.E.; McLinden, C.A.; Krotkov, N.; Yang, K.; Loyola, D.G.; Valks, P.; Theys, N.; van Roozendael, M.; Nowlan, C.R.; Chance, K.; et al. Application of OMI, SCIAMACHY, and GOME-2 satellite SO2 retrievals for detection of large emission sources. J. Geophys. Res. 2013, 118, 11,399–11,418. [Google Scholar] [CrossRef] [Green Version]
- Zavala-Araiza, D.; Omara, M.; Gautum, R.; Smith, M.I.; Sudhanshu, P.; Aben, I.; Almanza-Veloz, V.; Conley, S.; Houweling, S.; Kort, E.A.; et al. A tale of two regions: Methane emissions from oil and gas production in offshore/onshore Mexico. Environ. Res. Lett. 2021, 16, 024019. [Google Scholar] [CrossRef]
- Banerjee, S.; Toledano, P. A Policy Framework to Approach the Use of Associated Petroleum Gas, Staff Publication 7-2016; Columbia Center on Sustainable Investment: New York, NY, USA, 2016. [Google Scholar]
- Toledano, P.; Archibong, B. Mexico Associated Gas Utilization Study; Columbia Center on Sustainable Investment: New York, NY, USA, 2016; Available online: https://ccsi.columbia.edu/sites/default/files/content/docs/our%20focus/Mexico-APG-Utilitzation-Study-July-2016-CCSI.pdf (accessed on 10 January 2019).
- Torres, V.M.; Herndon, S.; Kodesh, Z.; Allen, D.T. Industrial flare performance at low flow conditions: Part 1. Study overview. Ind. Eng. Chem. Res. 2012, 51, 12559–12568. [Google Scholar] [CrossRef]
- Torres, V.M.; Herndon, S.; Allen, D.T. Industrial flare performance at low flow conditions: Part 2. Air and steam assisted flares. Ind. Eng. Chem. Res. 2012, 51, 12569–12576. [Google Scholar] [CrossRef]
- Pavlovic, R.T.; Al-Fadhli, F.M.; Kimura, Y.; Allen, D.T.; McDonald-Buller, E.C. Impacts of emission variability and flare combustion efficiency on ozone formation in the Houston-Galveston-Brazoria area. Ind. Eng. Chem. Res. 2012, 51, 12593–12599. [Google Scholar] [CrossRef]
- Herndon, S.; Nelson, D.D., Jr.; Wood, E.C.; Knighton, W.B.; Kolb, C.E.; Kodesh, Z.; Torres, V.M.; Allen, D.T. Application of the carbon balance method to flare emissions characteristics. Ind. Eng. Chem. Res. 2012, 51, 12577–12585. [Google Scholar] [CrossRef]
- Al-Fadhli, F. Impact of Flare Destruction Efficiencies on Ozone Concentrations: A case study for Houston, Texas. Master’s Thesis, University of Texas at Austin, Austin, TX, USA, May 2010. [Google Scholar]
- Talos Energy Mexico. Available online: https://www.talosenergy.com/operations/mexico/default.aspx (accessed on 17 November 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McDonald-Buller, E.; McGaughey, G.; Grant, J.; Shah, T.; Kimura, Y.; Yarwood, G. Emissions and Air Quality Implications of Upstream and Midstream Oil and Gas Operations in Mexico. Atmosphere 2021, 12, 1696. https://doi.org/10.3390/atmos12121696
McDonald-Buller E, McGaughey G, Grant J, Shah T, Kimura Y, Yarwood G. Emissions and Air Quality Implications of Upstream and Midstream Oil and Gas Operations in Mexico. Atmosphere. 2021; 12(12):1696. https://doi.org/10.3390/atmos12121696
Chicago/Turabian StyleMcDonald-Buller, Elena, Gary McGaughey, John Grant, Tejas Shah, Yosuke Kimura, and Greg Yarwood. 2021. "Emissions and Air Quality Implications of Upstream and Midstream Oil and Gas Operations in Mexico" Atmosphere 12, no. 12: 1696. https://doi.org/10.3390/atmos12121696
APA StyleMcDonald-Buller, E., McGaughey, G., Grant, J., Shah, T., Kimura, Y., & Yarwood, G. (2021). Emissions and Air Quality Implications of Upstream and Midstream Oil and Gas Operations in Mexico. Atmosphere, 12(12), 1696. https://doi.org/10.3390/atmos12121696