Toward the Estimation of All-Weather Daytime Downward Longwave Radiation over the Tibetan Plateau
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
2.2.1. Ground Measurements
2.2.2. Assimilation Dataset
2.2.3. Auxiliary Datasets
3. Methodology
3.1. Clear-Sky Model
3.2. Cloudy-Sky Model
3.3. Evaluation Metrics
4. Results and Discussion
4.1. Estimated DLR for the Ground Sites
4.1.1. Under Clear-Sky Conditions
4.1.2. Under Cloudy Conditions
4.2. Estimated DLR for the Entire Tibetan Plateau, Based on the CLDAS Dataset
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Calculation of DSR0
References
- Crawford, T.M.; Duchon, C.E. An Improved Parameterization for Estimating Effective Atmospheric Emissivity for Use in Calculating Daytime Downwelling Longwave Radiation. J. Appl. Meteorol. 1998, 38, 474–480. [Google Scholar] [CrossRef]
- Duarte, H.F.; Dias, N.L.; Maggiotto, S.R. Assessing Daytime Downward Longwave Radiation Estimates for Clear and Cloudy Skies in Southern Brazil. Agric. For. Meteorol. 2006, 139, 171–181. [Google Scholar] [CrossRef]
- Ångström, A.K. A Study of the Radiation of the Atmosphere: Based upon Observations of the Nocturnal Radiation during Expeditions to Algeria and to California; Smithsonian Institution: Washington, DC, USA, 1915; Volume 65. [Google Scholar]
- Brunt, D. Notes on Radiation in the Atmosphere. I. Q. J. R. Meteorol. Soc. 1932, 58, 389–420. [Google Scholar] [CrossRef]
- Brutsaert, W. On a Derivable Formula for Long-wave Radiation from Clear Skies. Water Resour. Res. 1975, 11, 742–744. [Google Scholar] [CrossRef]
- Idso, S.B. A Set of Equations for Full Spectrum and 8-to 14-μm and 10.5-to 12.5-μm Thermal Radiation from Cloudless Skies. Water Resour. Res. 1981, 17, 295–304. [Google Scholar] [CrossRef]
- Idso, S.B.; Jackson, R.D. Thermal Radiation from the Atmosphere. J. Geophys. Res. 1969, 74, 5397–5403. [Google Scholar] [CrossRef]
- Prata, A.J. A New Long-wave Formula for Estimating Downward Clear-sky Radiation at the Surface. Q. J. R. Meteorol. Soc. 1996, 122, 1127–1151. [Google Scholar] [CrossRef]
- Dilley, A.C.; O’Brien, D.M. Estimating Downward Clear Sky Long-wave Irradiance at the Surface from Screen Temperature and Precipitable Water. Q. J. R. Meteorol. Soc. 1998, 124, 1391–1401. [Google Scholar] [CrossRef]
- Swinbank, W.C. Long-wave Radiation from Clear Skies. Q. J. R. Meteorol. Soc. 1963, 89, 339–348. [Google Scholar] [CrossRef]
- Jacobs, J.D. Radiation climate of broughton island. In Energy Budget Studies in Relation to Fast-Ice Breakup Processes in Davis Strait; University of Colorado, Institute of Arctic and Alphine Research: Boulder, CO, USA, 1978; pp. 105–120. [Google Scholar]
- Konzelmann, T.; Wal, R.S.W.V.D.; Greuell, W.; Bintanja, R.; Henneken, E.A.C.; Abe-Ouchi, A. Parameterization of Global and Longwave Incoming Radiation for the Greenland Ice Sheet. Glob. Planet. Chang. 1994, 9, 143–164. [Google Scholar] [CrossRef]
- Lhomme, J.P.; Vacher, J.J.; Rocheteau, A. Estimating Downward Long-Wave Radiation on the Andean Altiplano. Agric. For. Meteorol. 2007, 145, 139–148. [Google Scholar] [CrossRef]
- Maykut, G.A.; Church, P.E. Radiation Climate of Barrow Alaska, 1962–1966. J. Appl. Meteorol. 1973, 12, 924–936. [Google Scholar] [CrossRef] [Green Version]
- Sugita, M.; Brutsaert, W. Cloud Effect in the Estimation of Instantaneous Downward Longwave Radiation. Water Resour. Res. 1993, 29, 599–605. [Google Scholar] [CrossRef]
- Choi, M.; Jacobs, J.M.; Kustas, W.P. Assessment of Clear and Cloudy Sky Parameterizations for Daily Downwelling Longwave Radiation over Different Land Surfaces in Florida, USA. Geophys. Res. Lett. 2008, 35, 288–299. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Liang, S. Global Atmospheric Downward Longwave Radiation over Land Surface under All-sky Conditions from 1973 to 2008. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Carmona, F.; Rivas, R.; Caselles, V. Estimation of Daytime Downward Longwave Radiation under Clear and Cloudy Skies Conditions over a Sub-Humid Region. Theor. Appl. Climatol. 2014, 115, 281–295. [Google Scholar] [CrossRef]
- Wang, W.; Liang, S. Estimation of High-Spatial Resolution Clear-Sky Longwave Downward and Net Radiation over Land Surfaces from MODIS Data. Remote Sens. Environ. 2009, 113, 745–754. [Google Scholar] [CrossRef]
- Yu, S.; Xin, X.; Liu, Q.; Zhang, H. Estimation of Clear-Sky Downward Longwave Radiation from Satellite Data in Heihe River Basin of Northwest China. In Proceedings of the Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 269–272. [Google Scholar]
- Wu, H.; Zhang, X.; Liang, S.; Yang, H.; Zhou, G. Estimation of Clear-sky Land Surface Longwave Radiation from MODIS Data Products by Merging Multiple Models. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Yu, S.S.; Xin, X.Z.; Liu, Q.H. Estimation of Clear-Sky Longwave Downward Radiation from HJ-1B Thermal Data. Sci. China 2013, 56, 829–842. [Google Scholar] [CrossRef]
- Wang, C.; Tang, B.H.; Wu, H.; Tang, R.; Li, Z.L. Estimation of Downwelling Surface Longwave Radiation under Heavy Dust Aerosol Sky. Remote Sens. 2017, 9, 207. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Zhou, J.; Zhang, X.; Liu, S.; Cao, R. Downscaling of Surface Air Temperature over the Tibetan Plateau Based on DEM. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 136–147. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Liang, S.; Wang, D. A Practical Reanalysis Data and Thermal Infrared Remote Sensing Data Merging (RTM) Method for Reconstruction of a 1-Km All-Weather Land Surface Temperature. Remote Sens. Environ. 2021, 260, 112437. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method That Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Shi, C.X.; Xie, Z.H.; Hui, Q.; Liang, M.L.; Yang, X.C. China Land Soil Moisture EnKF Data Assimilation Based on Satellite Remote Sensing Data. Sci. China Earth Sci. 2011, 54, 1430–1440. [Google Scholar] [CrossRef]
- Jia, B.; Xie, Z.; Dai, A.; Shi, C.; Chen, F. Evaluation of Satellite and Reanalysis Products of Downward Surface Solar Radiation over East Asia: Spatial and Seasonal Variations. J. Geophys. Res. Atmos. 2013, 118, 3431–3446. [Google Scholar] [CrossRef]
- Wang, B.; Yaoming, M.A.; Weiqiang, M.A. Estimation of Land Surface Temperature Retrieved from EOS/MODIS in Naqu Area over Tibetan Plateau. J. Remote Sens. 2012, 16, 1289–1309. [Google Scholar]
- Shi, P.-L.; Zhang, X.-Z.; Zhong, Z.-M.; Ouyang, H. Diurnal and Seasonal Variability of Soil CO2 Efflux in a Cropland Ecosystem on the Tibetan Plateau. Agric. For. Meteorol. 2006, 137, 220–233. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, P.; Liu, Y.; Ouyang, H. Experimental Study on Soil CO2 Emission in the Alpine Grassland Ecosystem on Tibetan Plateau. Sci. China Ser. D 2005, 48, 218–224. [Google Scholar]
- Yu, L.; Wang, H.; Wang, G.; Song, W.; Huang, Y.; Li, S.-G.; Liang, N.; Tang, Y.; He, J.-S. A Comparison of Methane Emission Measurements Using Eddy Covariance and Manual and Automated Chamber-Based Techniques in Tibetan Plateau Alpine Wetland. Environ. Pollut. 2013, 181, 81–90. [Google Scholar] [CrossRef]
- Shang, L.; Zhang, Y.; Lyu, S.; Wang, S. Seasonal and Inter-Annual Variations in Carbon Dioxide Exchange over an Alpine Grassland in the Eastern Qinghai-Tibetan Plateau. PLoS ONE 2016, 11, e0166837. [Google Scholar] [CrossRef]
- Wen, J.; Lan, Y.; Su, Z.; Tian, H.; Shi, X.; Zhang, Y.; Wang, X. Advances in Observation and Modeling of Land Surface Processes Over the Source Region of the Yellow River. Adv. Earth Sci. 2011, 26, 575–586. [Google Scholar]
- Zhang, Y.; Yu, G.; Yang, J.; Wimberly, M.C.; Zhang, X.; Tao, J.; Jiang, Y.; Zhu, J. Climate-Driven Global Changes in Carbon Use Efficiency. Glob. Ecol. Biogeogr. 2014, 23, 144–155. [Google Scholar] [CrossRef]
- Uppala, S.M.; Dee, D.; Kobayashi, S.; Berrisford, P.; Simmons, A. Towards a Climate Data Assimilation System: Status Update of ERA-Interim. ECMWF Newsl. 2008, 115, 12–18. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P. The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Gao, L.; Bernhardt, M.; Schulz, K.; Chen, X. Elevation Correction of ERA-Interim Temperature Data in the Tibetan Plateau. Int. J. Climatol. 2017, 37, 3540–3552. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- Onogi, K.; Tsutsui, J.; Koide, H.; Sakamoto, M.; Kobayashi, S.; Hatsushika, H.; Matsumoto, T.; Yamazaki, N.; Kamahori, H.; Takahashi, K. The JRA-25 Reanalysis. J. Meteorol. Soc. Jpn. 2007, 85, 369–432. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, M.; Sun, M.; Wang, B.; Huang, X.; Wang, Q.; Fang, F. Comparison of Surface Air Temperature Derived from NCEP/DOE R2, ERA-Interim, and Observations in the Arid Northwestern China: A Consideration of Altitude Errors. Theor. Appl. Climatol. 2015, 119, 99–111. [Google Scholar] [CrossRef]
- Coulson, K.L. Characteristics of the Radiation Emerging from the Top of a Rayleigh Atmosphere—I: Intensity and Polarization. Planet. Space Sci. 1959, 1, 265–276. [Google Scholar] [CrossRef]
- King, M.D.; Kaufman, Y.J.; Menzel, W.P.; Tanre, D. Remote Sensing of Cloud, Aerosol, and Water Vapor Properties from the Moderate Resolution Imaging Spectrometer (MODIS). IEEE Trans. Geosci. Remote Sens. 1992, 30, 2–27. [Google Scholar] [CrossRef] [Green Version]
- King, M.D.; Menzel, W.P.; Kaufman, Y.J.; Tanré, D.; Gao, B.C.; Platnick, S.; Ackerman, S.A.; Remer, L.A.; Pincus, R.; Hubanks, P.A. Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from MODIS. IEEE Trans. Geosci. Remote Sens. 2003, 41, 442–458. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Liang, S.; Wang, W.; Guo, Y. An Efficient Hybrid Method for Estimating Clear-Sky Surface Downward Longwave Radiation from MODIS Data. J. Geophys. Res. Atmos. 2017, 122, 2616–2630. [Google Scholar] [CrossRef]
Site | Interval (min) | Acquisition Period | Data Source |
---|---|---|---|
AN | 60 | 1 October 2002–31 December 2004 | CEOP-CAMP 1 (https://data.eol.ucar.edu/, accessed on 10 December 2020) [29] |
BJ | 60 | 1 October 2002–31 December 2004 | CEOP-CAMP 1 (https://data.eol.ucar.edu/, accessed on 10 December 2020) [29] |
TD | 60 | 1 October 2002–31 December 2004 | CEOP-CAMP 1 (https://data.eol.ucar.edu/, accessed on 10 December 2020) [29] |
GZ | 60 | 1 October 2002–31 December 2004 | CEOP-CAMP 1 (https://data.eol.ucar.edu/, accessed on 10 December 2020) [29] |
DX | 30 | 1 January 2002–31 December 2012 | ChinaFLUX 2 (http://www.chinaflux.org/, accessed on 10 December 2020) [30,31] |
HB | 30 | 1 January 2010–31 December 2010 | ChinaFLUX 2 (http://www.chinaflux.org/, accessed on 10 December 2020) [32] |
AL | 30 | 1 January 2012–31 December 2013 | ChinaFLUX 2 (http://www.chinaflux.org/, accessed on 10 December 2020) [33] |
MQ | 30 | 1 January 2013–31 December 2013 | NIEER 3 (http://www.nieer.cas.cn/, accessed on 10 December 2020) [34] |
NQ | 30 | 1 January 2010–31 December 2010 | ChinaFLUX 2 (http://www.chinaflux.org/, accessed on 10 December 2020) [35] |
Abbreviation | Formula | Source |
---|---|---|
AN-CK | [3] | |
BT-CK | [4] | |
SW-CK | [10] | |
IJ-CK | [7] | |
BR-CK | [5] | |
ID-CK | [6] | |
PR-CK | [8] | |
DO-CK | [9] |
Abbreviation | Formula | Training Area | Source |
---|---|---|---|
MC-CL | Barrow Alaska | [14] | |
JA-CL | Broughton Island | [11] | |
SB-CL | northeastern Kansas | [15] | |
KO-CL | Greenland Ice Sheet | [12] | |
CD-CL | 36.61° N, 97.49° W * | [1] | |
LH-CL | Andean Altiplano | [13] |
Site | AL | AN | TD | BJ | DX | GZ | HB | MQ | NQ | Average Value | |
---|---|---|---|---|---|---|---|---|---|---|---|
Method | |||||||||||
AN-CK | RMSE (W/m2) | 16.7 | 22.8 | 31.1 | 30.1 | 43.4 | 17.8 | 29.1 | 23.7 | 26.6 | 26.8 |
MBE (W/m2) | 10.3 | 10.4 | 16.1 | 20.2 | 38.4 | 11.9 | 5.4 | −2.7 | −4.7 | 11.7 | |
R2 | 0.72 | 0.73 | 0.61 | 0.7 | 0.84 | 0.88 | 0.68 | 0.75 | 0.84 | 0.75 | |
BT-CK | RMSE (W/m2) | 13.2 | 20.9 | 27.9 | 25.3 | 36.3 | 13.7 | 29.7 | 18.3 | 30.9 | 24.1 |
MBE (W/m2) | −2.9 | 2.3 | 7.9 | 11.7 | 29.5 | 3.1 | −3.3 | −6.4 | −13.7 | 3.1 | |
R2 | 0.73 | 0.72 | 0.64 | 0.7 | 0.83 | 0.88 | 0.67 | 0.74 | 0.84 | 0.75 | |
SW-CK | RMSE (W/m2) | 19.4 | 28.8 | 35.1 | 43.1 | 52.7 | 36.6 | 36.9 | 22.8 | 29.5 | 33.9 |
MBE (W/m2) | 9.5 | 13.7 | 17.1 | 27.7 | 45 | 29.8 | 3.6 | 5.3 | 2.7 | 17.2 | |
R2 | 0.61 | 0.65 | 0.54 | 0.54 | 0.71 | 0.79 | 0.5 | 0.81 | 0.75 | 0.66 | |
IJ-CK | RMSE (W/m2) | 19.8 | 37.2 | 46.0 | 48.4 | 62.0 | 42.1 | 40.8 | 26.0 | 33.8 | 39.6 |
MBE (W/m2) | 10.9 | 28.1 | 34.5 | 40 | 56.1 | 38.1 | 18.8 | 16.4 | 14.4 | 28.6 | |
R2 | 0.61 | 0.64 | 0.59 | 0.56 | 0.75 | 0.81 | 0.49 | 0.82 | 0.78 | 0.67 | |
ID-CK | RMSE (W/m2) | 23.2 | 38.5 | 37.2 | 36.7 | 48.6 | 26.2 | 36.6 | 23.6 | 35.2 | 34.1 |
MBE (W/m2) | −15.6 | 13.3 | 20.2 | 22.8 | 38.5 | 18.3 | 2.6 | −2.7 | −4.1 | 10.4 | |
R2 | 0.6 | 0.61 | 0.56 | 0.5 | 0.7 | 0.79 | 0.54 | 0.8 | 0.73 | 0.65 | |
PR-CK | RMSE (W/m2) | 13.4 | 24.3 | 32.7 | 31.8 | 44.7 | 20.1 | 30.7 | 24.6 | 29.0 | 27.9 |
MBE (W/m2) | 4.3 | 11.4 | 17.6 | 21.2 | 38.7 | 13.8 | 5.0 | −3.4 | −4.5 | 11.6 | |
R2 | 0.75 | 0.71 | 0.61 | 0.67 | 0.82 | 0.86 | 0.68 | 0.73 | 0.82 | 0.74 | |
DO-CK | RMSE (W/m2) | 14.1 | 19.8 | 25.1 | 19.5 | 29.7 | 14.8 | 27.2 | 19.7 | 34.3 | 22.5 |
MBE (W/m2) | −6.3 | −3.4 | 1.9 | 4.6 | 22.5 | −8.3 | −6.1 | −10.6 | −20.8 | −2.8 | |
R2 | 0.77 | 0.79 | 0.71 | 0.78 | 0.89 | 0.91 | 0.77 | 0.89 | 0.87 | 0.82 |
Site | Daytime Mean Ta (K) | STD of Ta (K) | Daytime Mean e (hpa) | STD of e (hpa) |
---|---|---|---|---|
AL | 286.7 | 3.5 | 11.166 | 3.685 |
AN | 271.7 | 6.3 | 3.145 | 1.794 |
BJ | 275.2 | 7.8 | 3.907 | 2.659 |
TD | 271.3 | 6.4 | 3.211 | 2.106 |
DX | 278.4 | 6.7 | 3.994 | 2.750 |
GZ | 277.5 | 7.8 | 2.555 | 1.998 |
HB | 275.6 | 7.5 | 4.706 | 2.753 |
MQ | 278.5 | 7.3 | 5.602 | 3.342 |
NQ | 278.0 | 7.1 | 3.553 | 2.223 |
Site | AL | AN | TD | BJ | DX | GZ | HB | MQ | NQ | Average Value | |
---|---|---|---|---|---|---|---|---|---|---|---|
Method | |||||||||||
DO-CK (clear-sky model) | RMSE (W/m2) | 54.9 | 38.8 | 41.7 | 37.6 | 40.6 | 30.4 | 51.7 | 49.9 | 57.8 | 44.9 |
MBE(W/m2) | −48.4 | −28.0 | −25.7 | −25.8 | −25.4 | −21.7 | −43.1 | −43.4 | −52.3 | −34.8 | |
R2 | 0.62 | 0.76 | 0.73 | 0.82 | 0.62 | 0.85 | 0.65 | 0.73 | 0.74 | 0.72 | |
MC-CL | RMSE (W/m2) | 34.2 | 32.8 | 34.0 | 27.9 | 30.9 | 24.9 | 38.9 | 40.0 | 48.6 | 34.7 |
MBE (W/m2) | −28.5 | −22.2 | −17.6 | −17.8 | −16.9 | −17.0 | −31.0 | −34.6 | −42.6 | −25.4 | |
R2 | 0.79 | 0.81 | 0.79 | 0.89 | 0.75 | 0.89 | 0.77 | 0.83 | 0.75 | 0.81 | |
JA-CL | RMSE (W/m2) | 18.0 | 23.6 | 26.6 | 18.2 | 21.7 | 17.6 | 25.5 | 24.4 | 34.3 | 23.3 |
MBE (W/m2) | −5.8 | −8.0 | −2.6 | −2.2 | 0.3 | −3.6 | −14.2 | −17.6 | −25.3 | −8.8 | |
R2 | 0.82 | 0.83 | 0.81 | 0.91 | 0.82 | 0.89 | 0.82 | 0.88 | 0.76 | −0.84 | |
SB-CL | RMSE (W/m2) | 49.3 | 37.1 | 39.5 | 34.9 | 37.9 | 28.8 | 48.1 | 47.2 | 55.2 | 42.0 |
MBE (W/m2) | −43.5 | −26.5 | −23.6 | −23.8 | −23.2 | −20.5 | −40.1 | −40.9 | −49.9 | −32.4 | |
R2 | 0.72 | 0.78 | 0.76 | 0.84 | 0.66 | 0.86 | 0.70 | 0.76 | 0.75 | 0.76 | |
KO-CL | RMSE (W/m2) | 40.5 | 33.5 | 35.1 | 28.8 | 31.8 | 25.4 | 40.0 | 41.8 | 49.1 | 36.2 |
MBE (W/m2) | −34.1 | 22.5 | −17.3 | −18.5 | −17.5 | −17.4 | −31.1 | −36.3 | −42.4 | −21.3 | |
R2 | 0.74 | 0.80 | 0.76 | 0.88 | 0.74 | 0.89 | 0.74 | 0.81 | 0.72 | 0.79 | |
CD-CL | RMSE (W/m2) | 21.1 | 25.0 | 31.3 | 22.0 | 28.1 | 22.4 | 23.1 | 18.1 | 29.6 | 24.5 |
MBE (W/m2) | −1.7 | 6.6 | 13.7 | 11.9 | 16.4 | 11.3 | 1.1 | −6.6 | −6.4 | 6.5 | |
R2 | 0.73 | 0.78 | 0.78 | 0.91 | 0.81 | 0.86 | 0.78 | 0.88 | 0.75 | 0.81 | |
LH-CL | RMSE (W/m2) | 24.9 | 22.2 | 27.8 | 21.0 | 25.7 | 19.9 | 22.4 | 18.0 | 26.9 | 23.2 |
MBE (W/m2) | 16.2 | 4.4 | 10.9 | 11.9 | 15.5 | 8.6 | 2.0 | −2.2 | −9.7 | 6.4 | |
R2 | 0.80 | 0.82 | 0.81 | 0.91 | 0.84 | 0.88 | 0.83 | 0.89 | 0.74 | 0.84 |
Site | Ta RMSE (K) | DLR Error Caused by Ta (W/m2) | e RMSE (hpa) | DLR Error Caused by e (W/m2) |
---|---|---|---|---|
AL | 5.2 | 12.5 | 1.798 | 7.2 |
DX | 1.4 | 3.1 | 1.032 | 6.2 |
HB | 3.9 | 8.6 | 0.797 | 4.8 |
MQ | 2.2 | 4.9 | 2.302 | 13.8 |
NQ | 2.7 | 5.9 | 0.932 | 5.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, Z.; Ding, L.; Zhou, J.; Zhou, T. Toward the Estimation of All-Weather Daytime Downward Longwave Radiation over the Tibetan Plateau. Atmosphere 2021, 12, 1692. https://doi.org/10.3390/atmos12121692
Long Z, Ding L, Zhou J, Zhou T. Toward the Estimation of All-Weather Daytime Downward Longwave Radiation over the Tibetan Plateau. Atmosphere. 2021; 12(12):1692. https://doi.org/10.3390/atmos12121692
Chicago/Turabian StyleLong, Zhiyong, Lirong Ding, Ji Zhou, and Tianhao Zhou. 2021. "Toward the Estimation of All-Weather Daytime Downward Longwave Radiation over the Tibetan Plateau" Atmosphere 12, no. 12: 1692. https://doi.org/10.3390/atmos12121692
APA StyleLong, Z., Ding, L., Zhou, J., & Zhou, T. (2021). Toward the Estimation of All-Weather Daytime Downward Longwave Radiation over the Tibetan Plateau. Atmosphere, 12(12), 1692. https://doi.org/10.3390/atmos12121692