Forest Fires in Madeira Island and the Fire Weather Created by Orographic Effects
Abstract
:1. Introduction
2. Study Region, Case Studies and Numerical Modelling
2.1. Study Region
2.2. Case Studies (Historical Events)
2.3. Numerical Simulations and Model Validation
3. Results
3.1. Synoptic Environment
3.2. Mesoscale Environment and Fire Weather Conditions
3.2.1. Period 1: 12 and 13 August 2010
3.2.2. Period 2: 18 and 19 July 2012
3.2.3. Period 3: 08 to 10 August 2016
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Roe, G.H. Orographic precipitation. Annu. Rev. Earth Planet. Sci. 2005, 33, 645–671. [Google Scholar] [CrossRef]
- Houze, R.A. Orographic effects on precipitating clouds. Rev. Geophys. 2012, 50, RG1001. [Google Scholar] [CrossRef]
- Sharples, J.J. An overview of mountain meteorological effects relevant to fire behaviour and bushfire risk. Int. J. Wildland Fire 2009, 18, 737–754. [Google Scholar] [CrossRef]
- Coen, J.L.; Schroeder, W.; Quayle, B. The Generation and Forecast of Extreme Winds during the Origin and Progression of the 2017 Tubbs Fire. Atmosphere 2018, 9, 462. [Google Scholar] [CrossRef] [Green Version]
- Brewer, M.J.; Clements, C.B. The 2018 Camp Fire: Meteorological Analysis Using In Situ Observations and Numerical Simulations. Atmosphere 2020, 11, 47. [Google Scholar] [CrossRef] [Green Version]
- Coen, J.L.; Schroeder, W. The High Park fire: Coupled weather-wildland fire model simulation of a windstorm-driven wildfire in Colorado’s Front Range. J. Geophys. Res. Atmos. 2015, 120, 131–146. [Google Scholar] [CrossRef]
- Dowdy, A.J.; Ye, H.; Pepler, A. Future changes in extreme weather and pyroconvection risk factors for Australian wildfires. Sci. Rep. 2019, 9, 10073. [Google Scholar] [CrossRef] [PubMed]
- Di Virgilio, G.; Evans, J.P.; Blake, S.A.P.; Armstrong, M.; Dowdy, A.J.; Sharples, J.; McRae, R. Climate change increases the potential for extreme wildfires. Geophys. Res. Lett. 2019, 46, 8517–8526. [Google Scholar] [CrossRef]
- Dennison, P.E.; Brewer, S.C.; Arnold, J.D.; Moritz, M.A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 2014, 41, 2928–2933. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Kolden, C.A. Relationships between climate and macroscale area burned in the western United States. Int. J. Wildland Fire 2013, 22, 1003–1020. [Google Scholar] [CrossRef]
- Singleton, M.P.; Thode, A.E.; Sánchez Meador, A.J.; Iniguez, J.M. Increasing trends in high-severity fire in the southwestern USA from 1984 to 2015. For. Ecol. Manag. 2019, 433, 709–719. [Google Scholar] [CrossRef]
- Fromm, M.D.; Lindsey, T.; Servranckx, R.; Yue, G.; Trickl, T.; Sica, R.; Doucet, P.; Godin-Beekmann, S. The Untold Story of Pyrocumulonimbus. Bull. Am. Meteorol. Soc. 2010, 91, 1193–1210. [Google Scholar] [CrossRef] [Green Version]
- Peterson, D.A.; Campbell, J.R.; Hyer, E.J. Wildfire-driven thunderstorms cause a volcano-like stratospheric injection of smoke. NPJ Clim. Atmos. Sci. 2018, 1, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, T.M.; Barros, A.M.; Ager, A.A.; Fernandes, P.M. Assessing the effect of a fuel break network to reduce burnt area and wildfire risk transmission. Int. J. Wildland Fire 2016, 25, 619–632. [Google Scholar] [CrossRef]
- Gonzalez-Olabarria, J.R.; Reynolds, K.M.; Larrañaga, A.; Garcia-Gonzalo, J.; Busquets, E.; Pique, M. Strategic and tactical planning to improve suppression efforts against large forest fires in the Catalonia region of Spain. For. Ecol. Manag. 2019, 432, 612–622. [Google Scholar] [CrossRef]
- Finney, M. FARSITE: Fire Area Simulator–Model Development and Evaluation—Research Paper RMRS-RP-4 Revised; Technical Report; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2004.
- Morvan, D. Modeling the propagation of a wildfire through a Mediterranean shrub using a multiphase formulation. Combust. Flame 2004, 138, 199–210. [Google Scholar] [CrossRef]
- Sullivan, A.L. Wildland surface fire spread modelling, 1990–2007. 1: Physical and quasi-physical models. Int. J. Wildland Fire 2019, 18, 349–368. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, A.L. Wildland surface fire spread modelling, 1990–2007. 2: Empirical and quasi-empirical models. Int. J. Wildland Fire 2009, 18, 369–386. [Google Scholar] [CrossRef] [Green Version]
- Clark, T.; Jenkins, M.; Coen, J.; Packham, D. A Coupled Atmosphere Fire Model: Convective Feedback on Fire-Line Dynamics. J. Appl. Meteorol. 1996, 35, 875–901. [Google Scholar] [CrossRef] [Green Version]
- Mandel, J.; Beezley, J.; Kochanski, A. Coupled atmosphere-wildland fire modeling with WRF 3.3 and SFIRE 2011. Geosci. Model Dev. 2011, 4, 591–610. [Google Scholar] [CrossRef] [Green Version]
- Filippi, J.; Bosseur, F.; Pialat, X.; Santoni, P.; Strada, S.; Mari, C. Simulation of Coupled Fire/Atmosphere Interaction with the MesoNH-ForeFire Models. J. Combust. 2011, 2011, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Filippi, J.B.; Bosseur, F.; Mari, C.; Lac, C. Simulation of a large wildfire in a coupled fire-atmosphere model. Atmosphere 2018, 9, 218. [Google Scholar] [CrossRef] [Green Version]
- Giannaros, T.M.; Kotroni, V.; Lagouvardos, K. IRIS–Rapid response fire spread forecasting system: Development, calibration and evaluation. Agric. For. Meteorol. 2019, 279, 107745. [Google Scholar] [CrossRef]
- Cardil, A.; Monedero, S.; Silva, C.A.; Ramirez, J. Adjusting the rate of spread of fire simulations in real-time. Ecol. Model. 2019, 395, 39–44. [Google Scholar] [CrossRef]
- Kartsios, S.; Karacostas, T.; Pytharoulis, I.; Dimitrakopoulos, A.P. Numerical investigation of atmosphere-fire interactions during high-impact wildland fire events in Greece. Atmos. Res. 2021, 247, 105253. [Google Scholar] [CrossRef]
- Couto, F.T.; Iakunin, M.; Salgado, R.; Pinto, P.; Viegas, T.; Pinty, J.-P. Lightning modelling for the research of forest fire ignition in Portugal. Atmos. Res. 2020, 242, 104993. [Google Scholar] [CrossRef]
- Ganteaume, A.; Syphard, A.D. Ignition Sources. In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires; Manzello, S., Ed.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Kochtubajda, B.; Stewart, R.E.; Flannigan, M.D.; Bonsal, B.R.; Cuell, C.; Mooney, C.J. An Assessment of Surface and Atmospheric Conditions Associated with the Extreme 2014 Wildfire Season in Canada’s Northwest Territories. Atmos. Ocean 2019, 57, 73–90. [Google Scholar] [CrossRef]
- Couto, F.T.; Andrade, N.; Salgado, R.; Serra, J. Wildfire risk in Madeira island and the potential impacts on tourism. In Proceedings of the EGU General Assembly 2021, Online, 19–30 April 2021; p. EGU21-14575. [Google Scholar] [CrossRef]
- CTI Report 2017. In Análise e Apuramento dos Factos Relativos aos Incêndios que Ocorreram em Pedrógão Grande, Castanheira de Pera, Ansião, Alvaiázere, Figueiró dos Vinhos, Arganil, Góis, Penela, Pampilhosa da Serra, Oleiros e Sertã, entre 17 e 24 de junho de 2017; Comissão Técnica Independente (CTI), Assembleia da República: Lisboa, Portugal, 2017; p. 296.
- Adame, J.A.; Lope, L.; Hidalgo, P.J.; Sorribas, M.; Gutiérrez-Álvarez, I.; del Águila, A.; Saiz-Lopez, A.; Yela, M. Study of the exceptional meteorological conditions, trace gases and particulate matter measured during the 2017 forest fires in Doñana Natural Park, Spain. Sci. Total Environ. 2018, 645, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, J.; Fonseca, C.; Salgueiro, A.; Fernandes, P.; Lopez Iglésias, E.; de Neufville, R.; Mateus, F.; Castellnou Ribau, M.; Sande Silva, J.; Moura, J.M.; et al. Avaliação dos Incêndios Ocorridos Entre 14 e 16 de Outubro de 2017 em Portugal Continental. Relatório Final; CTI Report 2018; Comissão Técnica Independente (CTI), Assembleia da República: Lisboa, Portugal, 2018; p. 274. [Google Scholar]
- Dowdy, A.J.; Mills, G.A. Atmospheric and fuel moisture characteristics associated with lightning-attributed fires. J. Appl. Meteorol. Climatol. 2012, 51, 2025–2037. [Google Scholar] [CrossRef]
- Couto, F.T.; Salgado, R.; Costa, M.J.; Prior, V. Precipitation in the Madeira Island over a 10-year period and the meridional water vapour transport during the winter seasons. Int. J. Climatol. 2015, 35, 3748–3759. [Google Scholar] [CrossRef] [Green Version]
- Couto, F.T.; Salgado, R.; Costa, M.J. Analysis of intense rainfall events on Madeira Island during the 2009/2010 winter. Nat. Hazards Earth Syst. Sci. 2012, 12, 2225–2240. [Google Scholar] [CrossRef]
- Couto, F.T.; Ducrocq, V.; Salgado, R.; Costa, M.J. Numerical simulations of significant orographic precipitation in Madeira island. Atmos. Res. 2016, 169, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Couto, F.T.; Ducrocq, V.; Salgado, R.; Costa, M.J. Understanding significant precipitation in Madeira island using high-resolution numerical simulations of real cases. Q. J. R. Meteorol. Soc. 2017, 143, 251–264. [Google Scholar] [CrossRef]
- Luna, T.; Rocha, A.; Carvalho, A.C.; Ferreira, J.A.; Sousa, J. Modelling the extreme precipitation event over Madeira Island on 20 February 2010. Nat. Hazards Earth Syst. Sci. 2011, 11, 2437–2452. [Google Scholar] [CrossRef] [Green Version]
- Lira, C.; Lousada, M.; Falcão, A.P.; Gonçalves, A.B.; Heleno, S.; Matias, M.; Pereira, M.J.; Pina, P.; Sousa, A.J.; Oliveira, R.; et al. The 20 February 2010 Madeira Island flash-floods: VHR satellite imagery processing in support of landslide inventory and sediment budget assessment. Nat. Hazards Earth Syst. Sci. 2013, 13, 709–719. [Google Scholar] [CrossRef]
- Lopes, S.; Fragoso, M.; Lopes, A. Heavy Rainfall Events and Mass Movements in the Funchal Area (Madeira, Portugal): Spatial Analysis and Susceptibility Assessment. Atmosphere 2020, 11, 104. [Google Scholar] [CrossRef] [Green Version]
- Prada, S.; da Silva, M. Fog precipitation on the Island of Madeira (Portugal). Environ. Geol. 2001, 41, 384–389. [Google Scholar] [CrossRef]
- Prada, S.; Menezes, M.; Sequeira, D.; Figueira, C.; Oliveira, M. Fog precipitation and rainfall interception in the natural forests of Madeira Island (Portugal). Agric. For. Meteorol. 2009, 149, 1179–1187. [Google Scholar] [CrossRef]
- Prada, S.; Prada, S.; Cruz, J.V.; Figueira, C. Using stable isotopes to characterize groundwater recharge sources in the volcanic island of Madeira. J. Hydrol. 2016, 536, 409–425. [Google Scholar] [CrossRef]
- Fernandes, J.P.; Guiomar, N.; Gil, A. Strategies for conservation planning and management of terrestrial ecosystems in small islands (exemplified for the Macaronesian islands). Environ. Sci. Policy 2015, 51, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, T. Secção Regional da Madeira da Ordem do Engenheiros. In Proceedings of the Technical Session on Wildfire Risk Management (Gestão de Risco de Incêndio Florestal), Funchal, Madeira, Portugal, 28 October 2016. [Google Scholar]
- INCF Report (2016) Relatório Anual de áreas Ardidas e Incêndios Florestais em Portugal Continental, 2016. Instituto da Conservação da Natureza e das Florestas, I.P./Departamento de Gestão de Áreas Públicas e de Proteção Florestal, 2016; 50p, Available online: http://www2.icnf.pt/portal/florestas/dfci/relat/rel-if/2016 (accessed on 16 December 2020).
- Earth Observatory. Available online: https://earthobservatory.nasa.gov/images/45262/fires-in-madeira-portugal (accessed on 16 December 2020).
- Earth Observatory. Available online: https://earthobservatory.nasa.gov/images/78603/madeira-wildfires (accessed on 16 December 2020).
- EOSDIS-NASA. Available online: https://lance.modaps.eosdis.nasa.gov/cgi-bin/imagery/single.cgi?image=Madeira.A2016223.1205.250m.jpg (accessed on 16 December 2020).
- Earth Observatory. Available online: https://earthobservatory.nasa.gov/images/88590/fires-char-madeira (accessed on 16 December 2020).
- Lafore, J.-P.; Stein, J.; Asencio, N.; Bougeault, P.; Ducrocq, V.; Duron, J.; Fischer, C.; Héreil, P.; Mascart, P.; Masson, V.; et al. The Meso-NH Atmospheric Simulation System. Part I: Adiabatic formulation and control simulations. Ann. Geophys. 1998, 16, 90–109. [Google Scholar] [CrossRef]
- Lac, C.; Chaboureau, J.P.; Masson, V.; Pinty, J.P.; Tulet, P.; Escobar, J.; Leriche, M.; Barthe, C.; Aouizerats, B.; Augros, C.; et al. Overview of the Meso-NH model version 5.4 and its applications. Geosci. Model Dev. 2018, 11, 1929–1969. [Google Scholar] [CrossRef] [Green Version]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Cuxart, J.; Bougeault, P.; Redelsperger, J.L. A turbulence scheme allowing for mesoscale and large-eddy simulations. Q. J. R. Meteorol. Soc. 2000, 126, 1–30. [Google Scholar] [CrossRef]
- Verrelle, A.; Ricard, D.; Lac, C. Sensitivity of high-resolution idealized simulations of thunderstorms to horizontal resolution and turbulence parametrization. Q. J. R. Meteorol. Soc. 2015, 141, 433–448. [Google Scholar] [CrossRef]
- Pergaud, J.; Masson, V.; Malardel, S.; Couvreux, F. A Parameterization of Dry Thermals and Shallow Cumuli for Mesoscale Numerical Weather Prediction. Bound. Layer Meteorol. 2009, 132, 83. [Google Scholar] [CrossRef]
- Pinty, J.-P.; Jabouille, P. A mixed-phase cloud parameterization for use in mesoscale non-hydrostatic model: Simulations of a squall line and of orographic precipitation. In Proceedings of the Conference of Cloud Physics, Everett, WA, USA, 17–21 August 1998; pp. 217–220. [Google Scholar]
- Masson, V.; Moigne, P.L.; Martin, E.; Faroux, S.; Alias, A.; Alkama, R.; Belamari, S.; Barbu, A.; Boone, A.; Bouyssel, F.; et al. The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geosci. Model Dev. 2013, 6, 929–960. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Wiillen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- NOAA/ESRL Physical Sciences Laboratory. Available online: https://psl.noaa.gov/data/composites/hour/ (accessed on 16 December 2020).
- Alves, J.M.R.; Caldeira, R.M.A.; Miranda, P.M.A. Dynamics and oceanic response of the Madeira tip-jets. Q. J. R. Meteorol. Soc. 2020, 146, 3048–3063. [Google Scholar] [CrossRef]
- Belo-Pereira, M.; Santos, J.A. Air-Traffic Restrictions at the Madeira International Airport Due to Adverse Winds: Links to Synoptic-Scale Patterns and Orographic Effects. Atmosphere 2020, 11, 1257. [Google Scholar] [CrossRef]
- Etling, D. On atmospheric vortex streets in the wake of large islands. Meteorl. Atmos. Phys. 1989, 41, 157–164. [Google Scholar] [CrossRef]
- Stull, R.B. Introduction to Boundary Layer Meteorology; Kluwer Academic Publisher: New York, NY, USA, 1988. [Google Scholar]
- Sharples, J.J.; Mills, G.A.; McRae, R.H.D.; Weber, R.O. Foehn-Like Winds and Elevated Fire Danger Conditions in Southeastern Australia. J. Appl. Meteorol. Climatol. 2010, 49, 1067–1095. [Google Scholar] [CrossRef]
Year | TBA | %ABA (F+S) | Daily Expansion Rate (ha/h) | FRP MODIS (VIIRS) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Day | Mean | Max. | N | Mean | P95 | Max. | ||||
2010 | 8016.66 | 89.84% | 13/08 | 244.80 | 745.01 | 1234-1411UTC | 75 | 144.2 | 680.1 | 1488.1 |
14/08 | 165.80 | 324.48 | 0215-0353UTC | 17 | 155.4 | 297.6 | 297.6 | |||
2012 | 6045.64 | 69.04% | 16/07 | 2.46 | 7.61 | 0000-0359UTC | - (4) | - (2.7) | - (4.5) | - (4.5) |
17/07 | 24.86 | 16.99 | 0340-1318UTC | 10 (9) | 84.9 (9.2) | 372.0 (15.3) | 372.0 (15.3) | |||
18/07 | 82.09 | 102.70 | 0321-1440UTC | 38 (74) | 102.4 (18.4) | 364.8 (47.0) | 432.3 (142.8) | |||
19/07 | 172.95 | 290.37 | 0303-1421UTC | 69 (136) | 113.1 (31.1) | 586.6 (91.2) | 847.3 (157.0) | |||
20/07 | 35.00 | 93.71 | 0000-0244UTC | 3 (90) | 58.2 (7.2) | 81.2 (41.4) | 81.2 (51.3) | |||
21/07 | 17.20 | 18.80 | 0225-1343UTC | 7 (16) | 60.7 (4.0) | 264.5 (10.6) | 264.5 (10.6) | |||
22/07 | 8.79 | 22.58 | 0206-0346UTC | 2 (11) | 22.8 (5.9) | 29.0 (13.4) | 29.0 (13.4) | |||
2016 | 6246.25 | 91.79% | 8/08 | 60.80 | 88.61 | 1455-2400UTC | 22 (5) | 101.6 (30.9) | 265,1 (127.9) | 554.4 (127.9) |
9/08 | 76.65 | 139.38 | 1436-2400UTC | 25 (101) | 111.5 (20.5) | 321.5 (146.0) | 398.6 (95.7) | |||
10/08 | 131.72 | 203.26 | 0259-1417UTC | 54 (185) | 80.9 (14.9) | 204.5 (55.7) | 293.6 (136.4) | |||
11/08 | 29.92 | 40.86 | 0000-0240UTC | 17 (59) | 98.3 (15.1) | 519.5 (49.0) | 519.5 (69.8) | |||
12/08 | 12.28 | 12.28 | 0000-0401UTC | 2 (15) | 34.9 (7.7) | 53.2 (20.3) | 53.2 (20.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Couto, F.T.; Salgado, R.; Guiomar, N. Forest Fires in Madeira Island and the Fire Weather Created by Orographic Effects. Atmosphere 2021, 12, 827. https://doi.org/10.3390/atmos12070827
Couto FT, Salgado R, Guiomar N. Forest Fires in Madeira Island and the Fire Weather Created by Orographic Effects. Atmosphere. 2021; 12(7):827. https://doi.org/10.3390/atmos12070827
Chicago/Turabian StyleCouto, Flavio T., Rui Salgado, and Nuno Guiomar. 2021. "Forest Fires in Madeira Island and the Fire Weather Created by Orographic Effects" Atmosphere 12, no. 7: 827. https://doi.org/10.3390/atmos12070827
APA StyleCouto, F. T., Salgado, R., & Guiomar, N. (2021). Forest Fires in Madeira Island and the Fire Weather Created by Orographic Effects. Atmosphere, 12(7), 827. https://doi.org/10.3390/atmos12070827