Indoor Air Quality and Health Outcomes in Employees Working from Home during the COVID-19 Pandemic: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Air Quality Assessment
2.3. Health Outcomes Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- US EPA. Introduction to Indoor Air Quality; United States Environmental Protection Agency: Washington, DC, USA, 2021.
- Cincinelli, A.; Martellini, T. Indoor air quality and health. Int. J. Environ. Res. 2017, 14, 1286. [Google Scholar] [CrossRef][Green Version]
- US EPA. A Guide to Indoor Air Quality. 2021. Available online: https://www.epa.gov/indoor-air-quality-iaq/inside-story-guide-indoor-air-quality (accessed on 27 July 2021).
- Pietrogrande, M.C.; Casari, L.; Demaria, G.; Russo, M. Indoor air quality in domestic environments during periods close to Italian COVID-19 lockdown. Int. J. Environ. Res. Public Health 2021, 18, 4060. [Google Scholar] [CrossRef] [PubMed]
- Campagnolo, D.; Saraga, D.E.; Cattaneo, A.; Spinazze, A.; Mandin, C.; Mabilia, R.; Perreca, E.; Sakellaris, I.; Canha, N.; Mihucz, V.G.; et al. VOCs and aldehydes source identification in European office buildings-The OFFICAIR study. Build. Environ. 2017, 115, 18–24. [Google Scholar] [CrossRef]
- Spinazzè, A.; Campagnolo, D.; Cattaneo, A.; Urso, P.; Sakellaris, I.A.; Saraga, D.E.; Mandin, C.; Canha, N.; Mabilia, R.; Perreca, E.; et al. Indoor gaseous air pollutants determinants in office buildings—The OFFICAIR project. Indoor Air 2020, 30, 76–87. [Google Scholar] [CrossRef]
- Sérafin, G.; Blondeau, P.; Mandin, C. Indoor air pollutant health prioritization in office buildings. Indoor Air 2021, 31, 646–659. [Google Scholar] [CrossRef]
- He, C.; Morawska, L.; Taplin, L. Particle emission characteristics of office printers. Environ. Sci. Technol. 2007, 41, 6039–6045. [Google Scholar] [CrossRef][Green Version]
- Destaillats, H.; Maddalena, R.L.; Singer, B.C.; Hodgson, A.T.; McKone, T. Indoor pollutants emitted by office equipment: A review of reported data and information needs. Atmos. Environ. 2008, 42, 1371–1388. [Google Scholar] [CrossRef][Green Version]
- Weschler, C.J. Changes in indoor pollutants since the 1950s. Atmos. Environ. 2009, 43, 153–169. [Google Scholar] [CrossRef]
- Nag, P.K. Sick Building Syndrome and Other Building-Related Illnesses. In Office Building; Springer: Singapore, 2019; pp. 53–103. [Google Scholar]
- Mandin, C.; Trantallidi, M.; Cattaneo, A.; Canha, N.; Mihucz, V.G.; Szigeti, T.; Mabilia, R.; Perreca, E.; Spinazzè, A.; Fossati, S.; et al. Assessment of indoor air quality in office buildings across Europe–The OFFICAIR study. Sci. Total Environ. 2017, 579, 169–178. [Google Scholar] [CrossRef][Green Version]
- Vesitara, R.A.K.; Surahman, U. Sick building syndrome: Assessment of school building air quality. J. Phys. Conf. Ser. 2019, 1375, 012087. [Google Scholar] [CrossRef][Green Version]
- Rackes, A.; Waring, M. Do time-averaged, whole-building, effective volatile organic compound (VOC) emissions depend on the air exchange rate? A statistical analysis of trends for 46 VOC s in US offices. Indoor Air 2016, 26, 642–659. [Google Scholar] [CrossRef] [PubMed]
- Balvers, J.; Bogers, R.; Jongeneel, R.; van Kamp, I.; Boerstra, A.; van Dijken, F. Mechanical ventilation in recently built Dutch homes: Technical shortcomings, possibilities for improvement, perceived indoor environment and health effects. Archit. Sci. Rev. 2012, 55, 151. [Google Scholar] [CrossRef]
- D’Antonio, P. Combatting IAQ and health concerns: There are many ways to improve indoor air quality in buildings and to address COVID-19 fears. Consult. Specif. Eng. 2021, 58, 14–19. [Google Scholar]
- Bernstein, J.A.; Alexis, N.; Bacchus, H.; Bernstein, I.L.; Fritz, P.; Horner, E.; Li, N.; Mason, S.; Nel, A.; Oullette, J.; et al. The health effects of nonindustrial indoor air pollution. J. Allergy Clin. Immunol. 2008, 121, 585–591. [Google Scholar] [CrossRef]
- Svendsen, E.R.; Gonzales, M.; Commodore, A. The role of the indoor environment: Residential determinants of allergy, asthma and pulmonary function in children from a US-Mexico border community. Sci. Total. Environ. 2018, 616, 1513–1523. [Google Scholar] [CrossRef] [PubMed]
- Holgate, S.; Grigg, J.; Agius, R.; Ashton, J.R.; Cullinan, P.; Exley, K.; Fishwick, D.; Fuller, G.; Gokani, N.; Griffiths, C.; et al. Every Breath We Take: The Lifelong Impact of Air Pollution, Report of a Working Party; Royal College of Physicians: London, UK, 2016. [Google Scholar]
- Joshi, S.M. The sick building syndrome. Indian J. Occup. Environ. Med. 2008, 12, 61–64. [Google Scholar] [CrossRef]
- Wolkoff, P.; Azuma, K.; Carrer, P. Health, work performance, and risk of infection in office-like environments: The role of indoor temperature, air humidity, and ventilation. Int. J. Hyg. Environ. Health 2021, 233, 113709. [Google Scholar] [CrossRef]
- Bluyssen, P.M.; Roda, C.; Mandin, C.; Fossati, S.; Carrer, P.; De Kluizenaar, Y.; Mihucz, V.G.; de Oliveira Fernandes, E.; Bartzis, J. Self-reported health and comfort in ‘modern’ office buildings: First results from the European OFFICAIR study. Indoor Air 2016, 26, 298–317. [Google Scholar] [CrossRef] [PubMed]
- Pitarma, R.; Marques, G.; Ferreira, B.R. Monitoring indoor air quality for enhanced occupational health. J. Med. Syst. 2017, 41, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Carrer, P.; Wolkoff, P. Assessment of indoor air quality problems in office-like environments: Role of occupational health services. Int. J. Environ. Res. Public Health 2018, 15, 741. [Google Scholar] [CrossRef][Green Version]
- Feng, S.; Gao, D.; Liao, F.; Zhou, F.; Wang, X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol. Environ. Saf. 2016, 128, 67–74. [Google Scholar] [CrossRef]
- Chen, H.; Burnett, R.T.; Kwong, J.C.; Villeneuve, P.J.; Goldberg, M.S.; Brook, R.D.; van Donkelaar, A.; Jerrett, M.; Martin, R.V.; Brook, J.R.; et al. Risk of incident diabetes in relation to long-term exposure to fine particulate matter in Ontario, Canada. Environ. Health Perspect. 2013, 121, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Fleischer, N.L.; Merialdi, M.; van Donkelaar, A.; Vadillo-Ortega, F.; Martin, R.V.; Betran, A.P.; Souza, J.P.; O’Neill, M.S. Outdoor air pollution, preterm birth, and low birth weight: Analysis of the world health organization global survey on maternal and perinatal health. Environ. Health Perspect. 2014, 122, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Wolkoff, P. Indoor air pollutants in office environments: Assessment of comfort, health, and performance. Int. J. Hyg. Environ. Health 2013, 216, 371–394. [Google Scholar] [CrossRef]
- Asikainen, A.; Carrer, P.; Kephalopoulos, S.; de Oliveira Fernandes, E.; Wargocki, P.; Hänninen, O. Reducing burden of disease from residential indoor air exposures in Europe (HEALTHVENT project). Environ. Health 2016, 15, 61–72. [Google Scholar] [CrossRef]
- Vilhelmson, B.; Thulin, E. Who and where are the flexible workers? Exploring the current diffusion of telework in Sweden. New Technol. Work. Employ 2016, 31, 77–96. [Google Scholar] [CrossRef]
- Dingel, J.I.; Neiman, B. How many jobs can be done at home? J. Public Econ. 2020, 189, 104235. [Google Scholar] [CrossRef]
- Boeri, T.; Caiumi, A.; Paccagnella, M. Mitigating the work-safety trade-off. Covid Econ. 2020, 2, 60–66. [Google Scholar]
- Jones, J.M. In US, Telecommuting for Work Climbs to 37%. Gallup News. 2015. Available online: https://news.gallup.com/poll/184649/telecommuting-work-climbs.aspx (accessed on 5 December 2021).
- Rudolph, C.W.; Baltes, B.B. Age and health jointly moderate the influence of flexible work arrangements on work engagement: Evidence from two empirical studies. J. Occup. Health Psychol. 2017, 22, 40. [Google Scholar] [CrossRef] [PubMed]
- Conradie, W.J.; De Klerk, J.J. To flex or not to flex? Flexible work arrangements amongst software developers in an emerging economy. SA J. Hum. Resour. Manag. 2019, 17, 1–12. [Google Scholar] [CrossRef]
- Okuyan, C.B.; Begen, M.A. Working from home during the COVID-19 pandemic, its effects on health, and recommendations: The pandemic and beyond. Perspect. Psychiatr. Care 2021. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/ppc.12847 (accessed on 8 December 2021).
- Reznik, J.; Hungerford, C.; Kornhaber, R.; Cleary, M. Home-based work and ergonomics: Physical and psychosocial considerations. Issues Ment. Health Nurs. 2021. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Y.; Qian, J.; Parker, S.K. Achieving effective remote working during the COVID-19 pandemic: A work design perspective. Appl. Psychol. 2021, 70, 16–59. [Google Scholar] [CrossRef]
- Hu, D.S.; Azhar, E.I.; Madani, T.A.; Ntoumi, F.; Kock, R.; Dar, O.; Ippolito, G.; Mchogh, T.D.; Memish, Z.; Drosten, C.; et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis. 2020, 91, 264–266. [Google Scholar] [CrossRef] [PubMed][Green Version]
- US CDC. Laboratory-Confirmed COVID-19- Associated Hospitalizations. 2020. Available online: https://gis.cdc.gov/grasp/ COVIDNet/COVID19_3.html (accessed on 27 July 2021).
- Thompson, R. Pandemic potential of 2019-nCoV. Lancet Infect Dis. 2020, 20, 280. [Google Scholar] [CrossRef][Green Version]
- Koren, M.; Pető, R. Business disruptions from social distancing. PLoS ONE 2020, 15, e0239113. [Google Scholar] [CrossRef] [PubMed]
- Mongey, S.; Pilossoph, L.; Weinberg, A. Which workers bear the burden of social distancing? J. Econ. Inequal. 2021, 19, 509–526. [Google Scholar] [CrossRef]
- U.S. Bureau of Labor Statistics. Ability to Work from Home: Evidence from Two Surveys and Implications for the Labor Market in the COVID-19 Pandemic. 2020. Available online: https://www.bls.gov/opub/mlr/2020/article/ability-to-work-from-home.htm. (accessed on 20 November 2021).
- Barrot, J.N.; Grassi, B.; Sauvagnat, J. Sectoral effects of social distancing. AEA Pap. Proc. 2021, 111, 277–281. [Google Scholar] [CrossRef]
- Koohsari, M.J.; Nakaya, T.; Shibata, A.; Ishii, K.; Oka, K. Working from home after the COVID-19 pandemic: Do company employees sit more and move less? Sustainability 2021, 13, 939. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; Horton, J.; Ozimek, A.; Rock, D.; Sharma, G.; Tuye, H.Y. COVID-19 and Remote Work: An Early Look at US Data; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Deng, Z.; Morissette, R.; Messacar, D. Running the Economy Remotely: Potential for Working from Home during and after COVID-19. Statistics Canada Catalogue. 2021. Available online: https://www150.statcan.gc.ca/n1/pub/45-28-0001/2020001/article/00026-eng.htm (accessed on 5 December 2021).
- De Haas, M.; Faber, R.; Hamersma, M. How COVID-19 and the Dutch intelligent lockdown change activities, work and travel behaviour: Evidence from longitudinal data in the Netherlands. Transp. Res. Interdiscip. Perspect. 2020, 6, 100150. [Google Scholar] [CrossRef]
- Alonso, M.J.; Jørgensen, R.B.; Mathisen, H.M. Short term measurements of indoor air quality when using the home office in Norway. E3S Web Conf. 2021, 246, 01002. [Google Scholar] [CrossRef]
- Moreno-Rangel, A.; Baek, J.; Roh, T.; Xu, X.; Carrillo, G. Assessing impact of household intervention on indoor air quality and health of children with asthma in the US-Mexico border: A pilot study. J. Environ. Public Health 2020, 2020, 6042146. [Google Scholar] [CrossRef] [PubMed]
- Sousan, S.; Koehler, K.; Hallett, L.; Peters, T.M. Evaluation of consumer monitors to measure particulate matter. J. Aerosol Sci. 2017, 107, 123–133. [Google Scholar] [CrossRef][Green Version]
- Moreno-Rangel, A.; Sharpe, T.; Musau, F.; McGill, G. Field evaluation of a low-cost indoor air quality monitor to quantify exposure to pollutants in residential environments. J. Sens. Sens. Syst. 2018, 7, 373–388. [Google Scholar] [CrossRef][Green Version]
- Spinazzè, A.; Borghi, F.; Rovelli, S.; Mihucz, V.G.; Bergmans, B.; Cattaneo, A.; Cavallo, D.M. Combined and Modular Approaches for Multicomponent Monitoring of Indoor air Pollutants. Available online: https://www.tandfonline.com/doi/full/10.1080/05704928.2021.1995405 (accessed on 8 December 2021).
- Moreno-Rangel, A. Continuous IAQ Monitoring with Low-Cost Monitors: Protocol Development, Performance and Application in Residential Buildings; The Glasgow School of Art: Glasgow, UK, 2019. [Google Scholar]
- Moreno-Rangel, A.; Sharpe, T.; Musau, F.; McGill, G. Indoor fine particle (PM2.5) pollution and occupant perception of the indoor environment during summer of the first Passivhaus certified dwelling in Latin America. J. Nat. Resour. Dev. 2018, 8, 78–90. [Google Scholar] [CrossRef]
- Whitehead, C.; Robertson, A.; Burge, S.; Kely, C.; Leinster, P. A Questionnaire for Studies of Sick Building Syndrome: A Report to The Royal Society of Health Advisory Group on Sick Building Syndrome; Building Research Establishment Report: Watford, UK, 1995. [Google Scholar]
- Berglund, B.; Brunekreef, B.; Knöppe, H.; Lindvall, T.; Maroni, M.; Mølhave, L.; Skov, P. Effects of Indoor Air Pollution on Human Health. Report No. 10. European Concerted Action: Indoor Air Quality and Its Impact on Man; Eauropean Commission Report: Luxembourg, 1991. [Google Scholar]
- Berglund, B.; Bluyssen, P.; Clausen, G.; Garriga-Trillo, A.; Gunnarsen, L.; Knöppel, H.; Lindvall, T.; MaclEOD, P.; Mølhave, L.; Winneke, G. Sensory Evaluation of Indoor Air Quality. Report No. 20. European Collaborative Action: Indoor Air Quality and Its Impact on Man; European Commission Report: Luxembourg, 1999. [Google Scholar]
- ANSI/ASHRAE. Standard 55-2013: Thermal Environmental Conditions for Human Occupancy; National Standards Institute/American Society of Heating, Refrigerating, and Air-Conditioning Engineers: Atlanta, GA, USA, 2013. [Google Scholar]
- US EPA. Indoor Air Qqulity Tools for Schools Action Kit, EPA 402/K-07/008; United States Environmental Protection Agency: Washington, DC, USA, 2009.
- US EPA. NAAQS Table. 2021. Available online: https://www.epa.gov/criteria-air-pollutants/naaqs-table (accessed on 12 October 2021).
- US GBC. LEED v4.1: Indoor Environmental Quality Performance. US Green Building Council: Washington, DC, USA, 2021. Available online: https://www.usgbc.org/credits/existing-buildings-schools-existing-buildings-retail-existing-buildings-data-centers-5 (accessed on 12 October 2021).
- Venter, Z.S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. Air pollution declines during COVID-19 lockdowns mitigate the global health burden. Environ. Res. 2021, 192, 110403. [Google Scholar] [CrossRef] [PubMed]
- Ghahremanloo, M.; Choi, Y.; Sayeed, A.; Salman, A.K.; Pan, S.; Amani, M. Estimating daily high-resolution PM2. 5 concentrations over Texas: Machine Learning approach. Atmos. Environ. 2021, 247, 118209. [Google Scholar] [CrossRef]
- Xiao, Y.; Becerik-Gerber, B.; Lucas, G.; Roll, S.C. Impacts of working from home during COVID-19 pandemic on physical and mental well-being of office workstation users. J. Occup. Environ. Med. 2021, 63, 181–190. [Google Scholar] [CrossRef]
- Ferrante, G.; Mollicone, D.; Cazzato, S.; Lombardi, E.; Pifferi, M.; Turchetta, A.; Tancredi, G.; La Grutta, S. COVID-19 pandemic and reduced physical activity: Is there an impact on healthy and asthmatic children? Front. Pediatr. 2021, 9, 695703. [Google Scholar] [CrossRef]
Participants | No. of Rooms | No. of Family Members | Floor Material | Pet | Stove | Bathroom Fan | Air Purifier | Window Ventilation 1 | Vacuum Cleaning | Lawn Chemical | Temperature (°C) (SD) | Relative humidity (%) (SD) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5 | 5 | Tile | Y | Electric | Y | N | 1–2 | N | Y | 24.4 (1.9) | 54.3 (3.2) |
2 | 4 | 2 | Hardwood | N | Electric | N | Y | 1–2 | N | Y | 22.7 (1.5) | 53.5 (3.2) |
3 | 3 | 3 | Tile | Y | Electric | Y | N | 1–2 | N | Y | 24.7 (2.0) | 46.3 (3.5) |
4 | 3 | 5 | Completely carpeted | N | Electric | Y | N | Never | Y | N | 22.9 (1.4) | 52.8 (3.8) |
5 | 3 | 4 | Hardwood | Y | Electric | Y | N | Never | N | Y | 25.8 (1.2) | 56.5 (6.4) |
6 | 3 | 2 | Tile | Y | Electric | Y | N | Never | Y | N | 23.6 (0.8) | 48.9 (3.3) |
7 | 5 | 4 | Tile | Y | Gas | Y | Y | Never | N | Y | 26.9 (1.7) | 57.5 (4.0) |
8 | 0 | 2 | Partially carpeted | Y | Electric | Y | Y | Never | Y | N | 25.4 (0.7) | 52.2 (1.7) |
Participants | Office | Home |
---|---|---|
1 * | 8.95 (8.78–9.13) | 22.5 (22.3–22.8) |
2 * | 4.28 (4.09–4.28) | 45.7 (45.2–46.2) |
3 * | 8.03 (7.99–8.08) | 14.8 (14.7–14.8) |
4 * | 7.36 (7.28–7.44) | 12.2 (12.1–12.3) |
5 * | 9.78 (9.72–9.85) | 11.2 (11.2–11.3) |
6 * | 7.93 (7.83–8.02) | 16.8 (16.7–16.9) |
7 * | 12.2 (12.1–12.4) | 13.3 (13.2–13.3) |
8 * | 5.60 (5.49–5.71) | 11.5 (11.5–11.6) |
Total * | 8.18 (7.48–8.95) | 16.3 (12.4–21.3) |
Participants | Bedroom | Kitchen | Living Room |
---|---|---|---|
1 | 80.15 (79.23–81.09) * | 16.90 (16.66–17.16) | 12.33 (12.23–12.44) † |
2 | 94.51 (93.03–96.00) * | 22.58 (22.21–22.96) † | 29.71 (29.15–30.29) |
3 | 17.79 (17.65–17.94) * | 15.81 (15.68–15.93) | 11.40 (11.33–11.47) † |
4 | 13.04 (12.84–13.26) | 13.05 (12.90–13.20) | 11.37 (11.23–11.52) † |
5 | 9.73 (9.68–9.79) † | 10.87 (10.78–10.96) | 12.79 (12.67–12.90) * |
6 | 15.61 (15.37–15.85) | 20.65 (20.36–20.95) * | 14.30 (14.08–14.52) † |
7 | 21.09 (20.89–21.28) * | 18.39 (18.23–18.54) | 10.85 (10.75–10.95) † |
8 | 9.95 (9.78–10.13) | 15.25 (15.05–15.46) * | 8.89 (8.80–8.99) † |
Participants | Office | Home |
---|---|---|
1 * | 166.68 (164.63–168.76) | 253.48 (251.97–255.03) |
2 * | 172.71 (171.28–174.15) | 181.27 (180.53–182.00) |
3 * | 168.38 (167.10–169.66) | 242.89 (241.65–244.13) |
4 * | 173.78 (171.95–175.63) | 279.86 (278.22–281.55) |
5 * | 215.08 (213.47–216.70) | 222.05 (221.16–222.94) |
6 * | 164.66 (163.01–166.33) | 230.00 (228.38–231.67) |
7 * | 151.65 (149.71–153.61) | 229.11 (227.69–230.56) |
8 * | 168.31 (166.88–169.73) | 152.87 (152.49–153.27) |
Total * | 175.75 (165.44–186.70) | 217.49 (189.22–249.98) |
Participants | Bedroom | Kitchen | Living Room |
---|---|---|---|
1 | 228.38 (225.02–231.78) | 286.12 (280.82–291.52) * | 228.40 (225.92–230.90) |
2 | 184.97 (183.66–186.29) * | 168.95 (167.70–170.20) † | 178.68 (177.15–180.22) * |
3 | 228.31 (225.34–231.32) † | 264.36 (260.99–267.76) * | 239.27 (236.89–241.68) |
4 | 305.24 (300.28–310.29) * | 270.70 (267.52–273.88) | 273.77 (270.35–277.22) |
5 | 226.92 (225.23–228.63) † | 245.77 (243.18–248.39) * | 236.35 (233.67–239.08) |
6 | 237.75 (234.09–241.46) * | 219.36 (216.24–222.54) | 222.54 (222.05–229.06) |
7 | 200.58 (198.58–202.57) † | 209.91 (208.03–211.81) | 223.86 (221.67–226.08) * |
8 | 159.41 (158.17–160.68) * | 151.11 (150.19–152.03) | 148.89 (148.19–149.59) † |
Participants | Dry Eyes | Itchy or Watery Eyes | Blocked or Stuffy Nose | Dry Throat | Headache | Dry or Irritated Skin | Number of Symptoms Changed * | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Office | Home | Office | Home | Office | Home | Office | Home | Office | Home | Office | Home | Increased | No Change | Decreased | |
1 | 3 | 5 | 3 | 5 | 1 | 5 | 1 | 4 | 1 | 4 | 1 | 4 | 6 | 0 | 0 |
2 | 0 | 2 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 4 | 5 | 1 | 0 |
3 | 0 | 5 | 0 | 5 | 2 | 5 | 0 | 4 | 3 | 1 | 0 | 3 | 5 | 0 | 1 |
5 | 3 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 4 | 1 |
6 | 0 | 0 | 0 | 0 | 3 | 4 | 0 | 0 | 3 | 1 | 2 | 3 | 2 | 3 | 1 |
7 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | 1 |
Participants | Temperature (°C) | PM2.5 Levels (µg/m3) | ||
---|---|---|---|---|
Before COVID-19 | During COVID-19 | Before COVID-19 | During COVID-19 | |
1 | 29.9 (29.5–30.2) | 29.7 (29.3–30.2) | 13.9 (12.2–15.7) | 8.53 (6.98–10.4) * |
2 | 28.6 (27.9–29.3) | 28.0 (27.1–28.9) | 14.1 (12.5–15.9) | 8.53 (6.93–10.5) * |
3 | 30.1 (29.5–30.9) | 27.9 (27.2–28.7) * | 13.4 (11.7–15.4) | 8.36 (6.78–10.3) * |
4 | 30.1 (29.7–30.6) | 29.7 (29.2–31.1) | 13.6 (11.7–15.7) | 8.49 (6.92–10.4) * |
5 | 28.6 (27.9–29.3) | 28.0 (27.2–28.8) | 14.1 (12.5–15.9) | 7.85 (6.54–9.43) * |
6 | 25.1 (24.3–26.1) | 25.6 (24.4–27.0) | 12.1 (10.5–14.0) | 7.44 (5.97–9.28) * |
7 | 30.1 (29.7–30.5) | 28.6 (28.2–29.1) * | 13.4 (11.3–15.9) | 10.6 (8.52–13.2) * |
8 | 30.0 (29.2–30.9) | 29.6 (29.1–30.2) | 13.1 (10.1–17.1) | 8.51 (6.92–10.5) * |
Total | 29.0 (28.8–29.3) | 28.4 (28.1–28.7) * | 13.2 (12.6–13.8) | 8.47 (7.97–9.00) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roh, T.; Moreno-Rangel, A.; Baek, J.; Obeng, A.; Hasan, N.T.; Carrillo, G. Indoor Air Quality and Health Outcomes in Employees Working from Home during the COVID-19 Pandemic: A Pilot Study. Atmosphere 2021, 12, 1665. https://doi.org/10.3390/atmos12121665
Roh T, Moreno-Rangel A, Baek J, Obeng A, Hasan NT, Carrillo G. Indoor Air Quality and Health Outcomes in Employees Working from Home during the COVID-19 Pandemic: A Pilot Study. Atmosphere. 2021; 12(12):1665. https://doi.org/10.3390/atmos12121665
Chicago/Turabian StyleRoh, Taehyun, Alejandro Moreno-Rangel, Juha Baek, Alexander Obeng, Nishat Tasnim Hasan, and Genny Carrillo. 2021. "Indoor Air Quality and Health Outcomes in Employees Working from Home during the COVID-19 Pandemic: A Pilot Study" Atmosphere 12, no. 12: 1665. https://doi.org/10.3390/atmos12121665