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Abstract: Indoor air quality (IAQ) has a substantial impact on public health. Since the beginning of
the COVID-19 pandemic, more employees have worked remotely from home to minimize in-person
contacts. This pilot study aims to measure the difference in workplace IAQ before and during
the pandemic and its impact on employees’ health. The levels of fine particulate matter (PM2.5)
and total volatile organic chemicals (tVOC) were measured in the employees’ offices before the
COVID-19 pandemic and at homes while working from home during the pandemic using Foobot air
monitors. The frequencies of six sick building syndrome (SBS) symptoms were evaluated at each
period of monitoring. The result showed PM2.5 levels in households while working from home were
significantly higher than in offices while working at the office for all participants (p < 0.05). The PM2.5

levels in all households exceeded the health-based annual mean standard (12 µg/m3), whereas 90%
of offices were in compliance. The tVOC levels were all below the standard (500 µg/m3). We also
found a higher frequency of SBS symptoms were observed while working from home as the IAQ
was worse at home. This study suggested that working from home might have a detrimental health
impact due to poor IAQ and providing interventions to remote employees should be considered.

Keywords: indoor air quality; air monitor; particulate matter 2.5; COVID-19; employee health;
remote work

1. Introduction

Indoor air pollution has been classified as one of the top five environmental health
hazards. In the United States (US), the average person spends nearly 90% of their time
indoors, where air quality is estimated two to five times worse than outdoors [1]. Indoor
air quality (IAQ) is affected by outdoor factors (i.e., motor vehicle and industry), indoor
activities (i.e., cooking and smoking) and building-related factors (i.e., ventilation and air
conditioning systems) [2].

Outdoor chemicals, including fine particulate matter (PM2.5), volatile organic com-
pounds (VOCs), ozone (O3), carbon monoxide (CO), and radon could affect IAQ. However,
there are a variety of additional sources for indoor air pollution in offices and homes. In of-
fices, most indoor pollutants are related to building materials and human activities such as
carpet and other office furniture, cleaning agents, air fresheners, paints, adhesives, printers,
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pesticides, and biological contaminants from poor ventilation systems or water-damaged
walls [3–6]. A study conducted by Serafin et al. prioritized the indoor air pollutants in
office buildings and found formaldehyde, acetaldehyde, benzene, PM2.5, and PM10 as pri-
ority pollutants [7]. In households, activities performed by individuals including cooking,
laundry, smoking, and the use of chemicals for cleaning and hobbies increase indoor air
pollution [8]. The primary indoor air pollutants include particulate matter, volatile organic
compounds (VOCs), semi-volatile organic compounds (SVOCs), ozone, asbestos, tobacco
smoke, nonpolar volatile organic compounds, allergens, and mold [9,10].

Modern buildings are designed to be airtight, eliminating natural ventilation as they
are controlled by heating, ventilation, and air conditioning (HVAC) systems that recirculate
a high percentage of the air with minimal fresh air replacement, maintaining constant
IAQ across seasons [10–12]. HVAC systems have a critical role in keeping people inside
buildings comfortable and healthy, and they are intended to provide an air supply to
the room and have an exhaust system to remove dirty air from indoor spaces [13]. Non-
residential buildings like offices usually have an mechanical ventilation for outdoor air
change, with less natural ventilation or infiltration contribution, maintaining constant IAQ
over seasons [14]. It is recommended to install filters (F7 grade or above) to filter fresh
air to the unit to protect HVAC units and limit the ingress of outdoor particles. However,
inadequate system installation and poorly maintained air ducts and filters diminish the
air quality [15]. Biological particles such as bacteria, fungi, and viruses correlated with
respiratory health conditions can float in the air and linger longer in poorly ventilated
indoor spaces [16–18].

IAQ is a significant concern because it could adversely impact human health, comfort,
well-being, and productivity [19]. Acute and chronic health effects are associated with
exposure to indoor air pollutants in office environments. Sick building syndrome (SBS)
is a group of acute adverse health experiences related to IAQ, including headache, eye
irritation, dry cough, and itching skin for occupants of a building related to the time spent
in the building [20,21]. According to a multi-country study in Europe, the most prevalence
adverse health outcomes were dry eyes and headache, accounting for one-third of the office
workers [22]. In the US, SBS could be responsible for an overall loss in productivity, leading
to costs up to $75 billion per year [23]. Poor IAQ also increases the risk of chronic health
problems including cardiovascular disease, chronic obstructive and pulmonary disease,
and lung cancer [24]. Among indoor air pollutants, PM2.5 has become a major public health
hazard because it penetrates deeply into the respiratory trat, entering the circulatory system
and causing oxidative stress and inflammation [25–28]. Among indoor air pollutants, PM2.5
is a dominant indoor air pollutant causing 4000 DALYs (disability-adjusted life years) per
one million population, which is 80% of the total annual burden of diseases related to
indoor exposure [29].

The development of information and communication technologies have changed the
work environment, increasing the adaptation of remote work in diverse occupations in-
cluding managers, educators, and those working in computers, finance, and law [30,31]. In
Europe, the proportion of teleworkers was less than 10% in normal times, which increased
up to 31% during the COVID-19 pandemic [32]. In the US, the percentage of employees
who had ever worked remotely increased from 9% in 1995 to 37% in 2015 and the average
number of days working remotely per month was 2.3 [33]. The advantages of remote work
include flexibility, cost and time savings on commuting, and more time with family [34,35].
In contrast, it also has negative aspects such as loss of social interaction and self-discipline
and unfavorable physical conditions, leading to productivity reduction and psychological
and psychological distress [36–38].

In December 2019, the COVID-19, caused by a new coronavirus, SARS-CoV-2, was
first detected in Wuhan, China [39]. The World Health Organization (WHO) proclaimed
the COVID-19 outbreak to be the sixth global public health emergency on 30 January
2020 [40,41]. Due to the highly contagious nature of the disease, governments decided to
implement “social distancing” measures, closing businesses and enacting stay-at-home
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orders [42]. Some sectors of occupations such as healthcare, farm, construction, and service
workers could not be carried out remotely, and therefore had higher risks of contracting
COVID-19 [43]. In contrast, many employees in fields including management, education,
and information technology worked remotely during 2020 and half of 2021 [31,44–46].
In the US, approximately 30% of employees changed to working from home between
February and May 2020 [47]. In Canada, the percentage of remote workers increased from
13% to 39% during March 2020 [48]. In the Netherlands, 6% of workers worked from
home before the pandemic, but the percentage increased to 39% during the pandemic [49].
However, the domestic spaces became offices without consideration of environmental
infrastructures such as ventilation systems and subsequent indoor air quality, posing health
risks to employees [50].

This study aims to evaluate the IAQ in the office before the COVID-19 pandemic and
at home while working remotely from home during the pandemic and compare the health
outcomes in employees between those two periods.

2. Materials and Methods
2.1. Participants and Study Design

This pilot study was conducted in McAllen, South Texas, during May–July 2019 in
employees’ offices before the COVID-19 pandemic and during June–September 2020 at
their households while employees worked from home during the pandemic. A total of
eight staff members working in the same building in an academic organization participated
in the study. The study protocol was reviewed and approved by Texas A&M University’s
Institutional Review Boards. The methodology presented here was adapted to comply
with the COVID-19 regulation from a previous study from our research group [51].

2.2. Air Quality Assessment

This study used a low-cost consumer monitor called Foobot® Air Monitor (Model#
FBT0002100, AirBoxLab, San Francisco, CA, USA) to assess the IAQ in the offices and
households. The performance and accuracy of the Foobot monitor were assessed and
determined to be a reliable tool for measuring indoor pollution levels [52,53]. The Foobots
(low-cost air monitors) were used in the offices and homes (bedroom, kitchen, and living
room), where occupants stay for a longer time [54]. As suggested in previous studies,
calibration equations, data quality, and data corroboration were followed by compari-
son [55,56]. The IAQ was measured according to the ASTM D7297-14. The Foobot monitors
(air temperature (−40–125 ◦C), relative humidity (0–100%), PM2.5 (0–1300 µg/m3), and
tVOC (100–1000 ppb) were installed in each office on top of a bookshelf (5–6 feet). The
Foobot air monitors collected data at 5-minute intervals for two months in each office. The
same procedure was done in households to avoid any accidents with children living at the
house. We used hotspots in both locations to have a stable WiFi connection throughout the
study periods. The data was stored automatically every five minutes in a protected online
storage and were safely saved in an encrypted computer.

The outdoor temperature and PM2.5 levels in the study area during the same periods
of IAQ measurements were retrieved from the Texas Air Monitoring Information System
(TAMIS), a database maintained by the Texas Commission on Environmental Quality
(TCEQ). The outdoor tVOC levels were not collected because data were not available.

2.3. Health Outcomes Assessment

A brief version of the modified Office Environment Survey (OES) was implemented
for all participants to assess six SBS symptoms while they were working in the office before
the COVID pandemic and at home during the pandemic as well as the characteristics of
residential environment and behaviors in the participants’ homes [57]. The selected six
SBS symptoms included in this study were: dry eyes, itchy or watery eyes, blocked or
stuffy nose, dry throat, headache, and dry or irritated skin, as these were identified as
more dominant and prevalent from previous studies [56–59]. The frequencies of these
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symptoms were assessed using a Likert scale, and scores for each symptom were assigned
by the frequency of symptoms: 0 (not at all), 1 (less often), 2 (every 2–3 weeks), 3 (1–2 days
each week), 4 (3–4 days each week) and 5 (every day). The surveys were conducted online
via Qualtrics.

2.4. Statistical Analysis

The least-square geometric means (LSGMs) for PM2.5 and tVOC levels were calculated
from the data collected at 5-minute intervals for each monitoring period in the offices and
the three locations (bedroom, kitchen, and living room) within the homes. After adjusting
for temperature and relative humidity, the generalized linear model was fitted to estimate
LSGMs and 95% confidence intervals (CIs) of PM2.5 and tVOC levels and compare those
levels in the offices while working at the office before the COVID-19 pandemic and at
homes working from home during the pandemic in each participant and overall. The
differences in levels of those pollutants among locations within the houses were assessed
using Tukey’s post hoc test. However, for health outcomes, statistical analyses could not
be conducted for their associations with IAQ due to the small sample size. Instead, the
direction of changes in IAQ and frequencies of health outcomes were manually compared
between the two periods for each participant. All statistical analyses were conducted using
SAS version 9.4 (SAS Institute Inc., Cary, NC, USA). A p-value less than 0.05 was considered
statistically significant.

3. Results

In our study, eight female academic staff members aged 23 to 67 years old (average
36.1, standard deviation 13.1) participated. All participants lived in single-family detached
houses with central air conditioning systems and electric heaters. All households had
electric dryers vented outside and kitchen fans, and none of their family members smoked
or worked with hazardous materials on the job. Table 1 summarizes other characteristics of
the residential environment and behaviors in the participants’ home. The average numbers
of rooms and people living in the house were 3.3 and 3.4. Six homes had furry pets and
non-carpeted floors at their homes. Seven families used electronic stoves and bathroom
fans, and three households had air purifiers. Most households rarely opened windows
for ventilation and only three households cleaned their floors regularly using a vacuum
cleaner. Five houses used chemicals for lawn care. The averages of indoor temperature
and relative humidity measured at homes during the study period were 24.6 ◦C (range:
23.6–26.9) and 52.8% (range: 46.3–57.5), which are within the recommended ranges of
indoor temperature (23–27 ◦C) and relative humidity (30–60%) [60,61].

Table 1. Characteristics of residential environment and behaviors in the participants’ homes.

Participants No. of
Rooms

No. of
Family

Members
Floor Material Pet Stove Bathroom

Fan Air Purifier Window
Ventilation 1

Vacuum
Cleaning

Lawn
Chemical

Temperature
(◦C) (SD)

Relative
humidity
(%) (SD)

1 5 5 Tile Y Electric Y N 1–2 N Y 24.4 (1.9) 54.3 (3.2)
2 4 2 Hardwood N Electric N Y 1–2 N Y 22.7 (1.5) 53.5 (3.2)
3 3 3 Tile Y Electric Y N 1–2 N Y 24.7 (2.0) 46.3 (3.5)
4 3 5 Completely

carpeted
N Electric Y N Never Y N 22.9 (1.4) 52.8 (3.8)

5 3 4 Hardwood Y Electric Y N Never N Y 25.8 (1.2) 56.5 (6.4)
6 3 2 Tile Y Electric Y N Never Y N 23.6 (0.8) 48.9 (3.3)
7 5 4 Tile Y Gas Y Y Never N Y 26.9 (1.7) 57.5 (4.0)
8 0 2 Partially carpeted Y Electric Y Y Never Y N 25.4 (0.7) 52.2 (1.7)

1 Frequency per one month.

Table 2 shows the averages of PM2.5 levels in the offices before the COVID-19 pandemic
and at homes during the pandemic for each participant. The results showed that the aver-
ages of indoor PM2.5 levels ranged from 5.6–12.2 µg/m3 for offices and 11.2–45.7 µg/m3 for
homes in our participants. The PM2.5 concentration levels at homes during the pandemic
were significantly higher than those in the offices before the pandemic for each participant.
Six homes had levels higher than the current health-based standard (12 µg/m3) of the
National Ambient Air Quality Standards (NAAQS) [62], whereas one office had PM2.5
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levels higher than this level. Only one participant had PM2.5 levels higher than the national
standard in both the office and home.

Table 2. Averages of indoor PM2.5 levels (µg/m3) in the offices before the COVID-19 pandemic and
at homes during the pandemic (LSGMs, 95% CI).

Participants Office Home

1 * 8.95 (8.78–9.13) 22.5 (22.3–22.8)
2 * 4.28 (4.09–4.28) 45.7 (45.2–46.2)
3 * 8.03 (7.99–8.08) 14.8 (14.7–14.8)
4 * 7.36 (7.28–7.44) 12.2 (12.1–12.3)
5 * 9.78 (9.72–9.85) 11.2 (11.2–11.3)
6 * 7.93 (7.83–8.02) 16.8 (16.7–16.9)
7 * 12.2 (12.1–12.4) 13.3 (13.2–13.3)
8 * 5.60 (5.49–5.71) 11.5 (11.5–11.6)

Total * 8.18 (7.48–8.95) 16.3 (12.4–21.3)
* PM2.5 level in the household was significantly higher than the office at p < 0.05.

Table 3 describes the mean PM2.5 levels for different locations such as the bedroom,
kitchen, and living room in each home. Bedroom PM2.5 levels ranged from 9.95–94.51 µg/m3

compared to 10.87–22.58 µg/m3 for kitchens and 8.89–29.71 µg/m3 for living rooms. In
four homes (50%), the PM2.5 levels were highest in the bedrooms compared to the kitchens
and living rooms of the same home. The levels of PM2.5 were highest in the kitchen
(participants 6 and 8) and the living room (participant 5) compared to the other two
locations within the same home. At homes of six participants (75%), the levels of PM2.5 in
the living room were significantly lower than in other locations.

Table 3. Averages of PM2.5 levels (µg/m3) at different locations in the households (LSGMs and
95% CI).

Participants Bedroom Kitchen Living Room

1 80.15 (79.23–81.09) * 16.90 (16.66–17.16) 12.33 (12.23–12.44) †

2 94.51 (93.03–96.00) * 22.58 (22.21–22.96) † 29.71 (29.15–30.29)
3 17.79 (17.65–17.94) * 15.81 (15.68–15.93) 11.40 (11.33–11.47) †

4 13.04 (12.84–13.26) 13.05 (12.90–13.20) 11.37 (11.23–11.52) †

5 9.73 (9.68–9.79) † 10.87 (10.78–10.96) 12.79 (12.67–12.90) *
6 15.61 (15.37–15.85) 20.65 (20.36–20.95) * 14.30 (14.08–14.52) †

7 21.09 (20.89–21.28) * 18.39 (18.23–18.54) 10.85 (10.75–10.95) †

8 9.95 (9.78–10.13) 15.25 (15.05–15.46) * 8.89 (8.80–8.99) †

* PM2.5 level at the location was significantly higher than other locations at p < 0.05. † PM2.5 level at the location
was significantly lower than other locations at p < 0.05.

Table 4 describes the average tVOC levels in the offices and homes for all par-
ticipants. The average tVOC levels ranged from 151.65–215.08 µg/m3 for offices and
152.87–279.86 µg/m3 for homes. The tVOC levels were significantly higher at homes than
in the offices for all participants. However, all the tVOC levels in the offices and homes
were much lower than the acceptable maximum tVOC level of 500 µg/m3 [63].

Additional analyses showed that the average tVOC levels within the house ranged
from 159.4–305.2 µg/m3 in the bedrooms, 151.1–286.1 µg/m3 in the kitchens, and 148.9–
273.8 µg/m3 in the living rooms (Table 5). The tVOC levels at all locations within homes
were much lower than the acceptable maximum level of 500 µg/m3 [63]. In four homes
(50%), the tVOC levels were highest in the bedrooms compared to the kitchens and living
rooms of the same home. The tVOC levels were highest in the kitchen (participants 1, 3,
and 5) and the living room (participants 2 and 7) compared to the other two locations
within the same home.
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Table 4. Averages of indoor tVOC levels (µg/m3) in the offices before the COVID-19 pandemic and
at homes during the pandemic (LSGMs, 95% CI).

Participants Office Home

1 * 166.68 (164.63–168.76) 253.48 (251.97–255.03)
2 * 172.71 (171.28–174.15) 181.27 (180.53–182.00)
3 * 168.38 (167.10–169.66) 242.89 (241.65–244.13)
4 * 173.78 (171.95–175.63) 279.86 (278.22–281.55)
5 * 215.08 (213.47–216.70) 222.05 (221.16–222.94)
6 * 164.66 (163.01–166.33) 230.00 (228.38–231.67)
7 * 151.65 (149.71–153.61) 229.11 (227.69–230.56)
8 * 168.31 (166.88–169.73) 152.87 (152.49–153.27)

Total * 175.75 (165.44–186.70) 217.49 (189.22–249.98)
* The tVOC level in the household was significantly higher than the office at p < 0.05.

Table 5. Averages of tVOC levels (µg/m3) at different locations in the households (LSGMs and
95% CI).

Participants Bedroom Kitchen Living Room

1 228.38 (225.02–231.78) 286.12 (280.82–291.52) * 228.40 (225.92–230.90)
2 184.97 (183.66–186.29) * 168.95 (167.70–170.20) † 178.68 (177.15–180.22) *
3 228.31 (225.34–231.32) † 264.36 (260.99–267.76) * 239.27 (236.89–241.68)
4 305.24 (300.28–310.29) * 270.70 (267.52–273.88) 273.77 (270.35–277.22)
5 226.92 (225.23–228.63) † 245.77 (243.18–248.39) * 236.35 (233.67–239.08)
6 237.75 (234.09–241.46) * 219.36 (216.24–222.54) 222.54 (222.05–229.06)
7 200.58 (198.58–202.57) † 209.91 (208.03–211.81) 223.86 (221.67–226.08) *
8 159.41 (158.17–160.68) * 151.11 (150.19–152.03) 148.89 (148.19–149.59) †

* The tVOC level at the location was significantly higher than other locations at p < 0.05. † The tVOC level at the
location was significantly lower than other locations at p < 0.05.

Table 6 shows the changes in the frequency of six SBS symptoms associated with poor
air quality that participants reported. Among six participants who completed the health
survey at both periods, four subjects reported higher frequency of multiple symptoms
while working at home than while working in the office. The PM2.5 level while working
at home during COVID-19 (greater than the standard 12 µg/m3) was higher than at the
office before the COVID-19 pandemic (less than the standard 12 µg/m3). However, in
participants 5 and 7, despite the statistically significant difference, both office and home
PM2.5 levels were lower or higher than the standard 12 µg/m3, and the frequencies of
symptoms in these participants were stable between the two different time periods.

Table 6. Frequencies of experiencing six SBS symptoms while working in the office before COVID-19 pandemic and working
at home during the pandemic.

Participants

Dry Eyes Itchy or Watery Eyes Blocked or Stuffy Nose Dry Throat Headache Dry or
Irritated Skin Number of Symptoms Changed *

Office Home Office Home Office Home Office Home Office Home Office Home Increased No
Change Decreased

1 3 5 3 5 1 5 1 4 1 4 1 4 6 0 0
2 0 2 0 2 0 1 0 0 0 3 0 4 5 1 0
3 0 5 0 5 2 5 0 4 3 1 0 3 5 0 1
5 3 3 0 1 0 0 0 0 1 0 0 0 1 4 1
6 0 0 0 0 3 4 0 0 3 1 2 3 2 3 1
7 2 3 3 3 3 3 3 0 0 0 0 0 1 4 1

Each score means the frequency of symptoms: 0 (not at all), 1 (less often), 2 (every 2–3 weeks), 3 (1–2 days each week), 4 (3–4 days each
week), and 5 (every day). * Change in the frequencies of the symptoms while working from home during the COVID-19 pandemic,
compared to those while working in the office before the pandemic.

Table 7 displays the averages of outdoor temperatures and PM2.5 levels in the study
area before and during the COVID-19 pandemic for the same periods of office and home
IAQ measurements for each participant. In all participants, outdoor air quality while
working at home during the pandemic was significantly better than in the office before the
pandemic. The outdoor PM2.5 levels before the pandemic were significantly higher than
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the current national standard of 12 µg/m3, whereas those during the pandemic were below
the standard. The outdoor temperatures during the pandemic were lower than those before
the pandemic. Study participants’ homes and offices were in the same or neighboring areas,
and therefore there was no difference in outdoor air conditions among the participants.

Table 7. Averages of outdoor temperature (◦C) and PM2.5 levels (µg/m3) in the study area while
working in the office before the COVID-19 pandemic and working from home during the pandemic
(LSGMs and 95% CI).

Participants

Temperature (◦C) PM2.5 Levels (µg/m3)

Before
COVID-19

During
COVID-19

Before
COVID-19

During
COVID-19

1 29.9 (29.5–30.2) 29.7 (29.3–30.2) 13.9 (12.2–15.7) 8.53 (6.98–10.4) *
2 28.6 (27.9–29.3) 28.0 (27.1–28.9) 14.1 (12.5–15.9) 8.53 (6.93–10.5) *
3 30.1 (29.5–30.9) 27.9 (27.2–28.7) * 13.4 (11.7–15.4) 8.36 (6.78–10.3) *
4 30.1 (29.7–30.6) 29.7 (29.2–31.1) 13.6 (11.7–15.7) 8.49 (6.92–10.4) *
5 28.6 (27.9–29.3) 28.0 (27.2–28.8) 14.1 (12.5–15.9) 7.85 (6.54–9.43) *
6 25.1 (24.3–26.1) 25.6 (24.4–27.0) 12.1 (10.5–14.0) 7.44 (5.97–9.28) *
7 30.1 (29.7–30.5) 28.6 (28.2–29.1) * 13.4 (11.3–15.9) 10.6 (8.52–13.2) *
8 30.0 (29.2–30.9) 29.6 (29.1–30.2) 13.1 (10.1–17.1) 8.51 (6.92–10.5) *

Total 29.0 (28.8–29.3) 28.4 (28.1–28.7) * 13.2 (12.6–13.8) 8.47 (7.97–9.00) *
* The values during the COVID-19 pandemic were significantly lower than the office at p < 0.05.

4. Discussion

The advent of COVID-19 caused the shift of working pattern to work from home
remotely for many employees. However, homes may not be a good working environment,
compared to conventional office settings with better air conditioning and ventilation
systems [4]. In addition, activities performed by individuals at homes may increase indoor
air pollution, contributing to more negative health issues [8]. Therefore, in this pilot study,
IAQ in the offices before the COVID-19 pandemic and at homes during the pandemic and
employees’ health status in both periods were compared to assess the impact of working
from home on employees’ health during the pandemic. Our study found that the IAQ in
households during the pandemic was worse than that in the office before the pandemic in
all participants, and participants experienced higher frequency of SBS symptoms while
working from home. Specifically, home IAQ was worse than the outdoor air quality, and the
PM2.5 levels in all households while working from home were greater than the health-based
standard 12 µg/m3.

The interest in studying the impact of COVID-19 in different settings has led to
higher scrutiny of the IAQ at homes during the lockdown. A recent study conducted in
Northern Italy estimated the average indoor PM2.5 levels ranged from 8.6 to 18.7 µg/m3,
which were higher than the outdoor PM2.5 levels (7.4–15.4 µg/m3) for a two-week study
period in summer during the lockdown [4]. In a study conducted in Norway, the IAQ in
home offices were evaluated for up to two weeks, and levels of CO2 and other pollutants
higher than health-based standards were detected [50]. Our findings were consistent
with previous studies to investigate the IAQ at homes during the COVID-19 pandemic.
However, previous studies only focused on home IAQ during the pandemic without
comparing with IAQ in the office before the pandemic and the IAQ was measured for
shorter time periods (2 weeks) than our study (2 months), and the health impact was not
evaluated directly from the participants.

One of the strengths of our study is that evaluating IAQ in the office before the
pandemic and that at home during the pandemic in the same individuals in the same
season enabled us to compare personal exposure to air pollutants. In addition, their
health status during those two different periods was directly assessed in each individual to
investigate the negative health impact of the COVID-19 pandemic. Another strength of this
study is the utilization of a low-cost Foobot air monitor, for which reliability and accuracy
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in collecting temporal and spatial IAQ data were validated in previous studies [51–53].
This monitor provides real-time data and was helpful to monitor multiple locations at
home simultaneously, allowing longitudinal monitoring for months in each period. In
addition, the user-friendly interface requiring low maintenance and power consumption
allows participants to install it quickly without a researcher’s visit to their homes when
social distancing was in place.

There are several limitations to our study. First, due to the small sample size, we could
not conduct a statistical analysis to investigate the comprehensive association between IAQ
and health outcomes, adjust for characteristics of residential environments and behavioral
factors, and differentiate the influences of multiple factors on health complaints. Although
the changes of frequencies of health outcomes were in the same direction and degree of
changes of PM2.5, larger sample sizes should be considered to perform statistical analyses
in future studies. However, the IAQ was measured at 5-minute intervals for 2 months
at each location before and during the pandemic, and there were enough numbers of
measurements for statistical analyses, demonstrating a significantly worse air quality at
homes of all individual subjects during the pandemic, regardless of home environments.
Second, the Foobot air monitor did not measure the outdoor air pollutants simultaneously
because this monitor is not suitable for outdoor measurements. However, we collected the
daily outdoor temperature and PM2.5 data in our study area from TCEQ during the study
periods. We found the outdoor PM2.5 levels were significantly lower while working from
home during the pandemic, which is consistent with other studies showing the reduction
of ambient air pollution globally during the pandemic [64]. This indicates that the outdoor
PM2.5 levels did not confound the exacerbation of symptoms caused by home IAQ. Third,
IAQ measurements were not conducted during the whole year and seasonal and temporal
changes could not be addressed. In South Texas, the PM2.5 levels were highest in summer,
due to the hot and humid climate, and lowest in winter, and residents may experience
more symptoms in summer and less in winter [65]. However, the seasonal difference could
be excluded by assessing and comparing IAQ and health complaints in the same season.
Fourth, the health outcome was assessed by self-report surveys, leading to recall biases.
Finally, the effects of other behavioral factors could affect our findings. For example, some
symptoms such as headache or dry eyes could be related to the increased screen time from
telework [66], and other studies proposed that increased sedentary behaviors and reduced
physical activity may increase the susceptibility to adverse health outcomes [46,67].

Despite these limitations, IAQ and health outcomes were measured in the office and
household of the same participants, providing a unique opportunity to gather some limited
but essential information, allowing the comparison of two different work environments.
Especially, our findings provided us with information on whether employers need to
provide a healthy place at home for a remote worker and such intervention will be possible
with reasonable costs to protect and improve the health of all employees. Further large-scale
studies should be conducted by addressing the limitations discussed earlier.

5. Conclusions

This pilot study assessed workplace IAQ and SBS symptoms before and during the
COVID-19 pandemic in academic administrative staff members whose workplace changed
from office to home due to the pandemic. Low-cost sensors were found suitable for in
situ and continuous IAQ monitoring due to their simplicity, speed, and data accessibility.
This study found that working from home may cause greater health issues for employees
due to poor home IAQ, emphasizing the importance of the interventions to improve the
home IAQ. One of the recommendations to enhance IAQ at homes can be achieved through
behavioral changes such as opening windows and doors unless the outdoor air quality is
harmful. Another approach is to provide remote workers with portable air purifiers with
HEPA filters, particularly in locations where appropriate ventilation is difficult to attain.
Lastly, integrating these strategies with smart building technologies would maximize the
health and wellness of building occupants.
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