A Novel Multi-Input Multi-Output Recurrent Neural Network Based on Multimodal Fusion and Spatiotemporal Prediction for 0–4 Hour Precipitation Nowcasting
Abstract
:1. Introduction
2. Data
2.1. Dataset
2.2. WRF Model
3. Model
3.1. Spatiotemporal Prediction Network
3.2. Multimodal Fusion and Spatiotemporal Prediction
3.3. MFSP-Net
3.4. MFSP-LSTM
4. Experiment
4.1. Implementation Details
4.2. Performance Metric
4.3. Experimental Results and Analysis
4.3.1. Precipitation Amount Nowcasting
4.3.2. Precipitation Intensity Nowcasting
4.4. Ablation Study
4.5. Visualization Results
5. Discussion
- Compared with other data, the reanalysis data contain higher-level meteorological spatiotemporal features and errors. The higher-level spatiotemporal features enhance the network’s heavy precipitation nowcasting and the middle and late nowcasting effects. However, the disadvantages caused by errors need to be eliminated by using a larger-scale network or adding other meteorological spatiotemporal features.
- The precipitation amount grid data and radar echo data (precipitation intensity) are complementary. The two respectively represent the cumulative value and instantaneous value of precipitation. The precipitation amount grid data are very sparse and have weak continuity, but high accuracy. The radar echo data contain noise, but their continuity is strong. In precipitation nowcasting, combining the two types of data can improve the nowcasting effect. In the experiment, the forecasting effect of PA-RE-MFSP-Net was found to be similar to that of MFSP-Net.
- There are two difficulties in precipitation nowcasting. The first is the errors of the data, especially the excessive noise of the radar echo data. A larger network can increase its tolerance for data errors, but it requires a larger dataset to support it. Therefore, we hope to use more accurate radar data or introduce satellite data in the next step. Secondly, the loss function cannot accurately reflect the prediction effect of the network. It can be observed in Table 4, Table 5, Table 6, Table 7, Table 8 and Table 9 that there is no correct correspondence between CSI and MSE. We hope that relevant research can be carried out in the next step.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muhandhis, I.; Susanto, H.; Asfari, U. Determining Salt Production Season Based on Rainfall Forecasting Using Weighted Fuzzy Time Series. J. Appl. Comput. Sci. Math. 2020, 14, 23–27. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Y.; Tian, S.; Lai, S. Forecasting Rainfall with Recurrent Neural Network for irrigation equipment. IOP Conf. Ser. Earth Environ. Sci. 2020, 510, 042040. [Google Scholar] [CrossRef]
- Zhou, J.; Xiang, J.; Huang, S. Classification and Prediction of Typhoon Levels by Satellite Cloud Pictures through GC–LSTM Deep Learning Model. Sensors 2020, 20, 5132. [Google Scholar] [CrossRef] [PubMed]
- Osanai, N.; Shimizu, T.; Kuramoto, K.; Kojima, S.; Noro, T. Japanese early-warning for debris flows and slope failures using rainfall indices with Radial Basis Function Network. Landslides 2010, 7, 325–338. [Google Scholar] [CrossRef]
- Knievel, J.C.; Ahijevych, D.A.; Manning, K.W. Using temporal modes of rainfall to evaluate the performance of a numerical weather prediction model. Mon. Weather Rev. 2004, 132, 2995–3009. [Google Scholar] [CrossRef] [Green Version]
- Chu, Q.; Xu, Z.; Chen, Y.; Han, D. Evaluation of the ability of the Weather Research and Forecasting model to reproduce a sub-daily extreme rainfall event in Beijing, China using different domain configurations and spin-up times. Hydrol. Earth Syst. Sci. 2018, 22, 3391. [Google Scholar] [CrossRef] [Green Version]
- Bouget, V.; Béréziat, D.; Brajard, J.; Charantonis, A.; Filoche, A. Fusion of Rain Radar Images and Wind Forecasts in a Deep Learning Model Applied to Rain Nowcasting. Remote Sens. 2021, 13, 246. [Google Scholar] [CrossRef]
- Kumar, A.; Islam, T.; Sekimoto, Y.; Mattmann, C.; Wilson, B. Convcast: An embedded convolutional LSTM based architecture for precipitation nowcasting using satellite data. PLoS ONE 2020, 15, e0230114. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, X.; Guan, J.; Wu, M.; Guo, L. RN-Net: A Deep Learning Approach to 0–2 h Rainfall Nowcasting Based on Radar and Automatic Weather Station Data. Sensors 2021, 21, 1981. [Google Scholar] [CrossRef]
- Bonnet, S.M.; Evsukoff, A.; Morales Rodriguez, C.A. Precipitation Nowcasting with Weather Radar Images and Deep Learning in São Paulo, Brasil. Atmosphere 2020, 11, 1157. [Google Scholar] [CrossRef]
- Moon, S.H.; Kim, Y.H.; Lee, Y.H.; Moon, B.R. Application of machine learning to an early warning system for very short-term heavy rainfall. J. Hydrol. 2019, 568, 1042–1054. [Google Scholar] [CrossRef]
- Parmar, A.; Mistree, K.; Sompura, M. Machine learning techniques for rainfall prediction: A Review. In Proceedings of the International Conference on Innovations in information Embedded and Communication Systems, Coimbatore, India, 17–18 March 2017. [Google Scholar]
- Ayzel, G.; Heistermann, M.; Sorokin, A.; Nikitin, O.; Lukyanova, O. All convolutional neural networks for radar-based precipitation nowcasting. Procedia Comput. Sci. 2019, 150, 186–192. [Google Scholar] [CrossRef]
- Adewoyin, R.A.; Dueben, P.; Watson, P.; He, Y.; Dutta, R. TRU-NET: A deep learning approach to high resolution prediction of rainfall. Mach. Learn. 2021, 110, 2035–2062. [Google Scholar] [CrossRef]
- Lebedev, V.; Ivashkin, V.; Rudenko, I.; Ganshin, A.; Molchanov, A.; Ovcharenko, S.; Grokhovetskiy, R.; Bushmarinov, I.; Solomentsev, D. Precipitation nowcasting with satellite imagery. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2680–2688. [Google Scholar]
- Yan, Q.; Ji, F.; Miao, K.; Wu, Q.; Xia, Y.; Li, T. Convolutional Residual-Attention: A Deep Learning Approach for Precipitation Nowcasting. Adv. Meteorol. 2020, 2020, 6484812. [Google Scholar] [CrossRef]
- Tian, L.; Li, X.; Ye, Y.; Xie, P.; Li, Y. A Generative Adversarial Gated Recurrent Unit Model for Precipitation Nowcasting. IEEE Geosci. Remote Sens. Lett. 2019, 17, 601–605. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 802–810. [Google Scholar]
- Shi, X.; Gao, Z.; Lausen, L.; Wang, H.; Yeung, D.Y.; Wong, W.k.; Woo, W.C. Deep learning for precipitation nowcasting: A benchmark and a new model. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017; MIT Press: Cambridge, MA, USA, 2017; pp. 5617–5627. [Google Scholar]
- Woo, W.C.; Wong, W.K. Operational application of optical flow techniques to radar-based rainfall nowcasting. Atmosphere 2017, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, J.; Zhu, H.; Long, M.; Wang, J.; Yu, P.S. Memory in memory: A predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9154–9162. [Google Scholar]
- Wu, H.; Yao, Z.; Wang, J.; Long, M. MotionRNN: A Flexible Model for Video Prediction With Spacetime-Varying Motions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021 (Computer Vision Foundation/IEEE), Virtual, 19–25 June 2021; pp. 15435–15444. [Google Scholar]
- Oprea, S.; Martinez-Gonzalez, P.; Garcia-Garcia, A.; Castro-Vargas, J.A.; Orts-Escolano, S.; Garcia-Rodriguez, J.; Argyros, A. A Review on Deep Learning Techniques for Video Prediction. arXiv 2020, arXiv:2004.05214. [Google Scholar] [CrossRef]
- Wang, Y.; Long, M.; Wang, J.; Gao, Z.; Philip, S.Y. Predrnn: Recurrent neural networks for predictive learning using spatiotemporal lstms. In Advances in Neural Information Processing Systems; 2017; pp. 879–888. Available online: https://papers.nips.cc/paper/2017/hash/e5f6ad6ce374177eef023bf5d0c018b6-Abstract.html (accessed on 21 November 2021).
- Wang, Y.; Gao, Z.; Long, M.; Wang, J.; Philip, S.Y. Predrnn++: Towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning. In Proceedings of the International Conference on Machine Learning (PMLR), Stockholm, Sweden, 10–15 July 2018; pp. 5123–5132. [Google Scholar]
- Jing, J.; Li, Q.; Peng, X.; Ma, Q.; Tang, S. HPRNN: A Hierarchical Sequence Prediction Model for Long-Term Weather Radar Echo Extrapolation. In Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 4142–4146. [Google Scholar]
- Lin, Z.; Li, M.; Zheng, Z.; Cheng, Y.; Yuan, C. Self-attention convlstm for spatiotemporal prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 11531–11538. [Google Scholar]
- Zhang, P.; Jia, Y.; Gao, J.; Song, W.; Leung, H.K. Short-term rainfall forecasting using multi-layer perceptron. IEEE Trans. Big Data 2018, 6, 93–106. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Tech. Note NCAR/TN-475+ STR; University Corporation for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar] [CrossRef]
- Geng, Y.; Li, Q.; Lin, T.; Jiang, L.; Xu, L.; Zheng, D.; Yao, W.; Lyu, W.; Zhang, Y. Lightnet: A dual spatiotemporal encoder network model for lightning prediction. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2439–2447. [Google Scholar]
- Zhang, Y.; Yang, Q. An overview of multi-task learning. Natl. Sci. Rev. 2018, 5, 30–43. [Google Scholar] [CrossRef] [Green Version]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Hersbach, H. The ERA5 Atmospheric Reanalysis. In AGU Fall Meeting Abstracts; 2016; Volume 2016, p. NG33D–01. Available online: https://ui.adsabs.harvard.edu/abs/2016AGUFMNG33D..01H/abstract (accessed on 21 November 2021).
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J. Prototypes for the WRF (Weather Research and Forecasting) model. In Proceedings of the Ninth Conference Mesoscale Processes; American Meteorological Society: FL, USA, 2001; pp. J11–J15. Available online: https://opensky.ucar.edu/islandora/object/articles:21028 (accessed on 21 November 2021).
- Narayanan, A.L.; Siravuru, A.; Dariush, B. Gated Recurrent Fusion to Learn Driving Behavior from Temporal Multimodal Data. IEEE Robot. Autom. Lett. 2020, 5, 1287–1294. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems. 2019, pp. 8026–8037. Available online: https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html (accessed on 21 November 2021).
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Conference Track Proceedings, Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; Bengio, Y., LeCun, Y., Eds.; ACM: San Diego, CA, USA, 2015. [Google Scholar]
- Tran, Q.K.; Song, S.K. Computer vision in precipitation nowcasting: Applying image quality assessment metrics for training deep neural networks. Atmosphere 2019, 10, 244. [Google Scholar] [CrossRef] [Green Version]
Time Resolution | Spatial Resolution | Size | |
---|---|---|---|
Precipitation amount grid data | 1 h | 10 km | 120 × 120 |
Radar echo data | 12 min (6 min) | 5 km | 240 × 240 |
Reanalysis data | 1 h | 25 km | 48 × 48 |
Name | Scheme |
---|---|
Microphysics | Thompson scheme |
Cumulus parameterization | Kain–Fritsch (new Eta) scheme |
Planetary boundary layer | Mellor–Yamada–Janjic TKE scheme |
Surface layer | Revised MM5 Monin–Obukhov scheme |
Longwave radiation | Rapid radiative transfer model for GCMs |
Shortwave radiation | Rapid radiative transfer model for GCMs |
Precipitation Amount per Hour (mm) | Precipitation Level |
---|---|
r < 0.5 | No or hardly noticeable |
0.5 ≤ r < 2.0 | Light |
2.0 ≤ r < 5.0 | Light to moderate |
5.0 ≤ r | Moderate or greater |
Method | MSE/Frame ↓ | r ≥ 0.5 mm CSI ↑ POD ↑ FAR ↓ | r ≥ 2 mm CSI ↑ POD ↑ FAR ↓ | r ≥ 5 mm CSI ↑ POD ↑ FAR ↓ |
---|---|---|---|---|
WRF | 2.4569 | 0.1573 0.3615 0.7223 | 0.1005 0.2662 0.7557 | 0.0653 0.1483 0.6260 |
ConvLSTM | 1.4878 | 0.4120 0.6648 0.4799 | 0.3234 0.4335 0.4398 | 0.2250 0.2699 0.4246 |
TrajGRU | 1.5063 | 0.4249 0.6747 0.4655 | 0.3333 0.4538 0.4435 | 0.2358 0.2948 0.4588 |
PredRNN | 1.5262 | 0.3872 0.6412 0.5056 | 0.3096 0.4051 0.4321 | 0.2088 0.2424 0.3985 |
EF-ConvLSTM | 1.1037 | 0.5206 0.6553 0.2830 | 0.4483 0.5717 0.3249 | 0.3605 0.4633 0.3807 |
LF-ConvLSTM | 1.0400 | 0.5267 0.6517 0.2669 | 0.4604 0.5878 0.3200 | 0.3816 0.4944 0.3739 |
LF-TrajGRU (RN-Net) | 1.0668 | 0.5318 0.6840 0.2949 | 0.4602 0.5994 0.3352 | 0.3824 0.5124 0.3988 |
MFSP-Net | 1.0904 | 0.5415 0.6685 0.2596 | 0.4753 0.6181 0.3270 | 0.3996 0.5439 0.3990 |
MFSP-Net (without SAM) | 1.1307 | 0.5326 0.6594 0.2651 | 0.4597 0.5815 0.3129 | 0.3737 0.4836 0.3781 |
MFSP-Net (without ) | 1.0711 | 0.5353 0.6657 0.2679 | 0.4637 0.5707 0.2879 | 0.3812 0.4746 0.3402 |
PA-RA-MFSP-Net | 1.4590 | 0.4351 0.5556 0.3326 | 0.3406 0.4302 0.3794 | 0.2537 0.3134 0.4285 |
PA-RE-MFSP-Net | 1.1446 | 0.5265 0.6798 0.2998 | 0.4615 0.6175 0.3537 | 0.3815 0.5277 0.4205 |
Method | MSE/Frame ↓ | r ≥ 0.5 mm CSI ↑ POD ↑ FAR ↓ | r ≥ 2 mm CSI ↑ POD ↑ FAR ↓ | r ≥ 5 mm CSI ↑ POD ↑ FAR ↓ |
---|---|---|---|---|
WRF | 2.8775 | 0.1567 0.3591 0.7405 | 0.0992 0.2634 0.7947 | 0.0636 0.1449 0.7403 |
ConvLSTM | 1.6900 | 0.3560 0.6147 0.5447 | 0.2566 0.3368 0.4825 | 0.1689 0.1994 0.4758 |
TrajGRU | 1.7172 | 0.3665 0.5939 0.5150 | 0.2636 0.3543 0.4975 | 0.1768 0.2182 0.5232 |
PredRNN | 1.7064 | 0.3401 0.5808 0.5521 | 0.2500 0.2273 0.4770 | 0.1556 0.1789 0.4615 |
EF-ConvLSTM | 1.4632 | 0.4267 0.5392 0.3367 | 0.3605 0.4633 0.3807 | 0.2340 0.2912 0.4757 |
LF-ConvLSTM | 1.3740 | 0.4406 0.5590 0.3351 | 0.3608 0.4604 0.3858 | 0.2838 0.3617 0.4384 |
LF-TrajGRU (RN-Net) | 1.3939 | 0.4467 0.5780 0.3438 | 0.3613 0.4638 0.3841 | 0.2838 0.3694 0.4471 |
MFSP-Net | 1.4261 | 0.4598 0.5795 0.3185 | 0.3854 0.5049 0.3904 | 0.3070 0.4136 0.4650 |
MFSP-Net (without SAM) | 1.4861 | 0.4478 0.5645 0.3250 | 0.3643 0.4668 0.3903 | 0.2751 0.3556 0.4684 |
MFSP-Net (without ) | 1.4162 | 0.4467 0.5581 0.3159 | 0.3654 0.4496 0.3498 | 0.2817 0.3478 0.4154 |
PA-RA-MFSP-Net | 1.7002 | 0.3641 0.4627 0.3732 | 0.2695 0.3372 0.4328 | 0.1882 0.2296 0.4963 |
PA-RE-MFSP-Net | 1.4766 | 0.4481 0.5929 0.3606 | 0.3730 0.5035 0.4201 | 0.2918 0.3998 0.4901 |
Method | MSE/Frame ↓ | r ≥ 0.5 mm CSI ↑ POD ↑ FAR ↓ | r ≥ 2 mm CSI ↑ POD ↑ FAR ↓ | r ≥ 5 mm CSI ↑ POD ↑ FAR ↓ |
---|---|---|---|---|
WRF | 3.5216 | 0.1542 0.3609 0.7690 | 0.0968 0.2625 0.8353 | 0.0616 0.1459 0.8236 |
ConvLSTM | 1.8897 | 0.2860 0.5020 0.6083 | 0.1799 0.2294 0.5386 | 0.1076 0.1250 0.5552 |
TrajGRU | 1.9453 | 0.2901 0.4684 0.5767 | 0.1863 0.2466 0.5819 | 0.1138 0.1391 0.6375 |
PredRNN | 1.8929 | 0.2795 0.4761 0.6021 | 0.1800 0.2273 0.5382 | 0.0991 0.1127 0.5646 |
EF-ConvLSTM | 1.8053 | 0.3120 0.3893 0.4038 | 0.2340 0.2912 0.4757 | 0.1641 0.2043 0.5659 |
LF-ConvLSTM | 1.7260 | 0.3259 0.4106 0.4063 | 0.2471 0.3094 0.4629 | 0.1808 0.2255 0.5287 |
LF-TrajGRU (RN-Net) | 1.7312 | 0.3289 0.4167 0.3958 | 0.2464 0.3072 0.4343 | 0.1793 0.2269 0.5232 |
MFSP-Net | 1.7813 | 0.3503 0.4377 0.3770 | 0.2741 0.3530 0.4644 | 0.2000 0.2629 0.5564 |
MFSP-Net (without SAM) | 1.8418 | 0.3411 0.4310 0.4008 | 0.2555 0.3261 0.4889 | 0.1768 0.2251 0.5758 |
MFSP-Net (without ) | 1.7697 | 0.3298 0.4059 0.3718 | 0.2484 0.3005 0.4230 | 0.1720 0.2086 0.5133 |
PA-RA-MFSP-Net | 1.9390 | 0.2783 0.3505 0.4369 | 0.1953 0.2429 0.5195 | 0.1254 0.1518 0.6035 |
PA-RE-MFSP-Net | 1.8115 | 0.3444 0.4574 0.4365 | 0.2657 0.3538 0.5029 | 0.1906 0.2545 0.5780 |
Method | MSE/Frame ↓ | r ≥ 0.5 mm/h CSI ↑ POD ↑ FAR ↓ | r ≥ 2 mm/h CSI ↑ POD ↑ FAR ↓ | r ≥ 5 mm/h CSI ↑ POD ↑ FAR↓ |
---|---|---|---|---|
ConvLSTM | 163.29 | 0.6081 0.7364 0.2249 | 0.4966 0.6108 0.2764 | 0.3936 0.4606 0.2742 |
PredRNN++ | 162.04 | 0.6145 0.7473 0.2263 | 0.5028 0.6265 0.2824 | 0.4024 0.4799 0.2852 |
PredRNN | 152.84 | 0.6289 0.7572 0.2148 | 0.5235 0.6474 0.2702 | 0.4239 0.5008 0.2683 |
SA-ConvLSTM | 145.58 | 0.6334 0.7782 0.2288 | 0.5253 0.6627 0.2839 | 0.4283 0.5126 0.2768 |
Motion-PredRNN | 150.72 | 0.6291 0.7416 0.1973 | 0.5246 0.6372 0.2563 | 0.4232 0.4936 0.2596 |
MFSP-Net | 158.00 | 0.6279 0.7792 0.2380 | 0.5308 0.7014 0.3159 | 0.4605 0.5939 0.3308 |
RE-RA-MFSP-Net | 163.92 | 0.6205 0.7613 0.2317 | 0.5091 0.6787 0.3310 | 0.4268 0.5526 0.3496 |
PA-RE-MFSP-Net | 158.16 | 0.6241 0.7464 0.2102 | 0.5268 0.6745 0.2959 | 0.4460 0.5545 0.3085 |
MFSP-Net (without SAM) | 159.45 | 0.6209 0.7443 0.2125 | 0.5206 0.6513 0.2798 | 0.4327 0.5245 0.2905 |
MFSP-Net (without ) | 315.35 | 0.5857 0.8601 0.3538 | 0.4446 0.8765 0.5263 | 0.3742 0.8598 0.6022 |
Method | MSE/Frame ↓ | r ≥ 0.5 mm/h CSI ↑ POD ↑ FAR ↓ | r ≥ 2 mm/h CSI ↑ POD ↑ FAR ↓ | r ≥ 5 mm/h CSI ↑ POD ↑ FAR ↓ |
---|---|---|---|---|
ConvLSTM | 205.49 | 0.5435 0.6710 0.2650 | 0.4251 0.5224 0.3104 | 0.3164 0.3673 0.3105 |
PredRNN++ | 203.65 | 0.5462 0.6693 0.2567 | 0.4232 0.5181 0.3012 | 0.3108 0.3621 0.3005 |
PredRNN | 196.22 | 0.5580 0.6806 0.2499 | 0.4421 0.5419 0.2975 | 0.3335 0.3878 0.2949 |
SA-ConvLSTM | 188.54 | 0.5672 0.7091 0.2660 | 0.4491 0.5604 0.3082 | 0.3388 0.3977 0.2994 |
Motion-PredRNN | 194.16 | 0.5599 0.6754 0.2412 | 0.4468 0.5453 0.2960 | 0.3377 0.3913 0.2972 |
MFSP-Net | 208.53 | 0.5640 0.7184 0.2812 | 0.4661 0.6237 0.3569 | 0.3897 0.5041 0.3751 |
RE-RA-MFSP-Net | 216.19 | 0.5492 0.6793 0.2635 | 0.4387 0.5780 0.3564 | 0.3465 0.4386 0.3752 |
PA-RE-MFSP-Net | 208.66 | 0.5597 0.6925 0.2613 | 0.4604 0.6004 0.3429 | 0.3737 0.4674 0.3580 |
MFSP-Net (without SAM) | 208.28 | 0.5564 0.6832 0.2558 | 0.4528 0.5717 0.3207 | 0.3593 0.4364 0.3380 |
MFSP-Net (without ) | 397.96 | 0.5300 0.8061 0.3960 | 0.3996 0.8223 0.5648 | 0.3309 0.8010 0.6414 |
Method | MSE/Frame ↓ | r ≥ 0.5 mm/h CSI ↑ POD ↑ FAR↓ | r ≥ 2 mm/h CSI ↑ POD ↑ FAR ↓ | r ≥ 5 mm/h CSI ↑ POD ↑ FAR ↓ |
---|---|---|---|---|
ConvLSTM | 265.83 | 0.4545 0.5723 0.3254 | 0.3291 0.4012 0.3652 | 0.2247 0.2576 0.3716 |
PredRNN++ | 262.74 | 0.4510 0.5560 0.3066 | 0.3145 0.3763 0.3357 | 0.2048 0.2335 0.3327 |
PredRNN | 256.57 | 0.4575 0.5592 0.2955 | 0.3339 0.4015 0.3352 | 0.2319 0.2647 0.3362 |
SA-ConvLSTM | 251.45 | 0.4701 0.5967 0.3244 | 0.3396 0.4167 0.3576 | 0.2309 0.2662 0.3547 |
Motion-PredRNN | 253.65 | 0.4686 0.5780 0.3027 | 0.3485 0.4226 0.3473 | 0.2410 0.2752 0.3432 |
MFSP-Net | 279.43 | 0.4731 0.6125 0.3366 | 0.3730 0.4957 0.4084 | 0.2934 0.3738 0.4332 |
RE-RA-MFSP-Net | 291.23 | 0.4485 0.5558 0.3126 | 0.3386 0.4360 0.3987 | 0.2465 0.3029 0.4154 |
PA-RE-MFSP-Net | 280.89 | 0.4705 0.6031 0.3332 | 0.3680 0.4833 0.4090 | 0.2820 0.3514 0.4316 |
MMFSP-Net (without SAM) | 277.99 | 0.4679 0.5885 0.3184 | 0.3611 0.4580 0.3845 | 0.2717 0.3293 0.4111 |
MFSP-Net (without ) | 492.47 | 0.4522 0.7077 0.4523 | 0.3393 0.7139 0.6121 | 0.2772 0.6834 0.6859 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Wang, X.; Guan, J. A Novel Multi-Input Multi-Output Recurrent Neural Network Based on Multimodal Fusion and Spatiotemporal Prediction for 0–4 Hour Precipitation Nowcasting. Atmosphere 2021, 12, 1596. https://doi.org/10.3390/atmos12121596
Zhang F, Wang X, Guan J. A Novel Multi-Input Multi-Output Recurrent Neural Network Based on Multimodal Fusion and Spatiotemporal Prediction for 0–4 Hour Precipitation Nowcasting. Atmosphere. 2021; 12(12):1596. https://doi.org/10.3390/atmos12121596
Chicago/Turabian StyleZhang, Fuhan, Xiaodong Wang, and Jiping Guan. 2021. "A Novel Multi-Input Multi-Output Recurrent Neural Network Based on Multimodal Fusion and Spatiotemporal Prediction for 0–4 Hour Precipitation Nowcasting" Atmosphere 12, no. 12: 1596. https://doi.org/10.3390/atmos12121596
APA StyleZhang, F., Wang, X., & Guan, J. (2021). A Novel Multi-Input Multi-Output Recurrent Neural Network Based on Multimodal Fusion and Spatiotemporal Prediction for 0–4 Hour Precipitation Nowcasting. Atmosphere, 12(12), 1596. https://doi.org/10.3390/atmos12121596