Modifications to Snow-Melting and Flooding Processes in the Hydrological Model—A Case Study in Issyk-Kul, Kyrgyzstan
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Study Area
2.2. Data and Source
3. Methods
3.1. SWAT Model Definition
3.2. Snow Cover in the SWAT Model
3.3. The Original Degree-Day Factor Algorithm
3.4. Model Modifications: Accumulated Temperature and Differentiation of Snowfall and Rainfall
3.5. Comparison of Snow Pack Area and Temperature for the Selected Catchments
3.6. Calibration and Validation
4. Results
4.1. Rain and Snow Temperature Differences
Sensitivity Analysis
4.2. Best Parameter Set
4.3. SWAT Model Performance
4.3.1. Stream Flow in the Catchments
4.3.2. Accumulation Temperature and Snowmelt
4.4. Land Surface and Air Temperatures
Simulation of Snow Cover Area
5. Discussion
5.1. Model Performance
5.2. Accumulation Temperature and Snowmelt
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rasool, S. Climate change, Global change: What is the difference? Eos Trans. Am. Geophys. Union 1988, 69, 668. [Google Scholar] [CrossRef]
- Lin, N.-F.; Tang, J.; Han, F.-X. Eco-environmental problems and effective utilization of water resources in the Kashi Plain, western Terim Basin, China. Hydrogeol. J. 2001, 9, 202–207. [Google Scholar] [CrossRef]
- Ji, X.; Kang, E.; Chen, R.; Zhao, W.; Zhang, Z.; Jin, B. The impact of the development of water resources on environment in arid inland river basins of Hexi region, Northwestern China. Environ. Geol. 2006, 50, 793–801. [Google Scholar] [CrossRef]
- Michel-Guillou, E. Water resources and climate change: Water managers’ perceptions of these related environmental issues. J. Water Clim. Chang. 2015, 6, 111–123. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Fang, G.; Deng, H. Impact of climate change on water resources in the Tianshan Mountians. Cent. Asia. Acta Geogr. Sin. 2017, 72, 18–26. [Google Scholar]
- Fischer, A. Glaciers and climate change: Interpretation of 50 years of direct mass balance of Hintereisferner. Glob. Planet. Chang. 2010, 71, 13–26. [Google Scholar] [CrossRef]
- Gascoin, S.; Kinnard, C.; Ponce, R.; Lhermitte, S.; Macdonell, S.; Rabatel, A. Glacier contribution to streamflow in two headwaters of the Huasco River, Dry Andes of Chile. Cryosphere 2011, 5, 1099–1113. [Google Scholar] [CrossRef] [Green Version]
- Pelto, M.S. Quantifying Glacier Runoff Contribution to Nooksack River, WA in 2013-15. In Proceedings of the 2015 AGU Fall Meeting Abstracts, San Francisco, CA, USA, 14–18 December 2015. [Google Scholar]
- Swick, M.; Kaspari, S. Partitioning the Contribution of Light Absorbing Aerosols to Snow and Glacier Melt Using a Novel Hyperspectral Microscopy Method. In Proceedings of the 2017 AGU Fall Meeting Abstracts, New Orleans, LA, USA, 11–15 December 2017. [Google Scholar]
- Hock, R.; Rees, G.; Williams, M.W.; Ramirez, E. Contribution from glaciers and snow cover to runoff from mountains in different climates. Hydrol. Process. 2006, 20, 2089–2090. [Google Scholar] [CrossRef]
- Luo, Y.; Arnold, J.; Liu, S.; Wang, X.; Chen, X. Inclusion of glacier processes for distributed hydrological modeling at basin scale with application to a watershed in Tianshan Mountains, northwest China. J. Hydrol. 2013, 477, 72–85. [Google Scholar] [CrossRef]
- Li, X.; Ma, Y.; Sun, Y.; Gong, H.; Li, X. Flood hazard assessment in Pakistan at grid scale. J. Geo-Inf. Sci. 2013, 15, 314–320. [Google Scholar] [CrossRef]
- Lian, J.; Gong, H.; Li, X.; Zhao, W.; Hu, Z. Design and development of flood/waterlogging disaster risk model based on Arcobjects. J. Geo-Inf. Sci. 2009, 11, 376–381. [Google Scholar] [CrossRef]
- Long, H.; Liu, Y.; Li, X.; Chen, Y. Building new countryside in China: A geographical perspective. Land Use Policy 2010, 27, 457–470. [Google Scholar] [CrossRef]
- Zhao, G.; Pang, B.; Xu, Z.; Wang, Z.; Shi, R. Assessment on the hazard of flash flood disasters in China. J. Hydraul. Eng. 2016, 47, 1133–1142. [Google Scholar]
- Alymkulova, B.; Abuduwaili, J.; Issanova, G.; Nahayo, L. Consideration of water uses for its sustainable management, the case of Issyk-Kul Lake, Kyrgyzstan. Water 2016, 8, 298. [Google Scholar] [CrossRef] [Green Version]
- Giralt, S.; Klerkx, J.; Riera, S.; Julia, R.; Lignier, V.; Beck, C.; De Batist, M.; Kalugin, I. Recent paleoenvironmental evolution of Lake Issyk-Kul. In Lake Issyk-Kul: Its Natural Environment; Springer: Berlin/Heidelberg, Germany, 2002; pp. 125–145. [Google Scholar]
- Vollmer, M.K.; Weiss, R.F.; Schlosser, P.; Williams, R.T. Deep-water renewal in Lake Issyk-Kul. Geophys. Res. Lett. 2002, 29, 124-1–124-4. [Google Scholar] [CrossRef]
- Dawadi, S.; Ahmad, S. Changing climatic conditions in the Colorado River Basin: Implications for water resources management. J. Hydrol. 2012, 430, 127–141. [Google Scholar] [CrossRef]
- Abadi, L.S.K.; Shamsai, A.; Goharnejad, H. An analysis of the sustainability of basin water resources using Vensim model. KSCE J. Civ. Eng. 2015, 19, 1941–1949. [Google Scholar] [CrossRef]
- De Batist, M.; Imbo, Y.; Vermeesch, P.; Klerkx, J.; Giralt, S.; Delvaux, D.; Lignier, V.; Beck, C.; Kalugin, I.; Abdrakhmatov, K. Bathymetry and sedimentary environments of Lake Issyk-Kul, Kyrgyz Republic (Central Asia): A large, high-altitude, tectonic lake. In Lake Issyk-Kul: Its Natural Environment; Springer: Berlin/Heidelberg, Germany, 2002; pp. 101–123. [Google Scholar]
- Jailoobayev, A.; Neronova, T.; Nikolayenko, A.; Mirkhashimov, I. Water Quality Standards and Norms in Kyrgyz Republic; Regional Environmental Centre for Central Asia (CAREC): Almaty, Kazakhstan, 2009. [Google Scholar]
- Wang, G.; Shen, Y.; Wang, N.; Wu, Q. The effects of climate change and human activities on the lake level of the Issyk-Kul during the past 100 years. J. Glaciol. Geocryol. 2010, 32, 1097–1105. [Google Scholar]
- Narama, C.; Shimamura, Y.; Nakayama, D.; Abdrakhmatov, K. Recent changes of glacier coverage in the western Terskey-Alatoo range, Kyrgyz Republic, using Corona and Landsat. Ann. Glaciol. 2006, 43, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Alifujiang, Y.; Abuduwaili, J.; Ge, Y. Trend Analysis of Annual and Seasonal River Runoff by Using Innovative Trend Analysis with Significant Test. Water 2021, 13, 95. [Google Scholar] [CrossRef]
- Jost, G.; Moore, R.D.; Weiler, M.; Gluns, D.R.; Alila, Y. Use of distributed snow measurements to test and improve a snowmelt model for predicting the effect of forest clear-cutting. J. Hydrol. 2009, 376, 94–106. [Google Scholar] [CrossRef]
- Martinec, J.; Rango, A. Parameter values for snowmelt runoff modelling. J. Hydrol. 1986, 84, 197–219. [Google Scholar] [CrossRef]
- Anderson, E.A. A Point Energy and Mass Balance Model of a Snow Cover; US Department of Commerce, National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 1976; Volume 19.
- He, Z.; Parajka, J.; Tian, F.; Blöschl, G. Estimating degree-day factors from MODIS for snowmelt runoff modeling. Hydrol. Earth Syst. Sci. 2014, 18, 4773–4789. [Google Scholar] [CrossRef] [Green Version]
- Jones, H.; Sochanska, W.; Stein, J.; Roberge, J.; Plamondon, A.; Charette, J. Snowmelt in a boreal forest site: An integrated model of meltwater quality (SNOQUAL1). In Acidic Precipitation; Springer: Berlin/Heidelberg, Germany, 1986; pp. 1485–1493. [Google Scholar]
- Smith, M.B.; Korenʹ, V.; Zhang, Z.; Reed, S.M.; Seo, D.; Moreda, F.; Kuzmin, V.A. NOAA NWS Distributed Hydrologic Modeling Research and Development; NOAA Institutional Repository: Silver Spring, MD, USA, 2004.
- Shimamura, Y.; Izumi, T.; Matsuyama, H. Remote sensing of areal distribution of snow cover and snow water resources in mountains based on synchronous observations of Landsat-7 satellite-A case study around the Joetsu border of Niigata prefecture in Japan. In Proceedings of the General Meeting of the Association of Japanese Geographers Annual Meeting of the Association of Japanese Geographers, Spring 2004, 29 July 2004; The Association of Japanese Geographers: Tokyo, Japan, 2004. [Google Scholar]
- Herrero, J.; Polo, M.; Moñino, A.; Losada, M. An energy balance snowmelt model in a Mediterranean site. J. Hydrol. 2009, 371, 98–107. [Google Scholar] [CrossRef]
- Feng, T.; Feng, S. An Energy Balance Snowmelt Model for Application at a Continental Alpine Site. Procedia Eng. 2012, 37, 208–213. [Google Scholar] [CrossRef] [Green Version]
- Jost, G.; Moore, R.D.; Smith, R.; Gluns, D.R. Distributed temperature-index snowmelt modelling for forested catchments. J. Hydrol. 2012, 420, 87–101. [Google Scholar] [CrossRef]
- Yu, W.; Zhao, Y.; Nan, Z.; Li, S. Improvement of snowmelt implementation in the SWAT hydrologic model. Acta Ecol. Sin. 2013, 33, 6992–7001. [Google Scholar]
- Duan, Y.; Liu, T.; Meng, F.; Luo, M.; Frankl, A.; De Maeyer, P.; Bao, A.; Kurban, A.; Feng, X. Inclusion of modified snow melting and flood processes in the swat model. Water 2018, 10, 1715. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Fohrer, N. SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrol. Process. Int. J. 2005, 19, 563–572. [Google Scholar] [CrossRef]
- Fontaine, T.; Cruickshank, T.; Arnold, J.; Hotchkiss, R. Development of a snowfall–snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT). J. Hydrol. 2002, 262, 209–223. [Google Scholar] [CrossRef]
- Xu, C.; Chen, Y.; Hamid, Y.; Tashpolat, T.; Chen, Y.; Ge, H.; Li, W. Long-term change of seasonal snow cover and its effects on river runoff in the Tarim River basin, northwestern China. Hydrol. Process. Int. J. 2009, 23, 2045–2055. [Google Scholar] [CrossRef]
- ZHANG, X.-y.; Li, J.; Yang, Y.-Z.; You, Z. Runoff Simulation of the Catchment of the Headwaters of the Yangtze River Based on SWAT Model. J. Northwest For. Univ. 2012, 5. [Google Scholar]
- Arnold, J.G.; Muttiah, R.S.; Srinivasan, R.; Allen, P.M. Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin. J. Hydrol. 2000, 227, 21–40. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.; Ding, Y. Spatial variation of degree-day factors on the observed glaciers in western China. Acta Geogr. Sin. 2006, 61, 89. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Suzuki, K.; Kadota, T.; Ohata, T. Sublimation from snow surface in southern mountain taiga of eastern Siberia. J. Geophys. Res. Atmos. 2004, 109, D21. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.; Allen, P.; Volk, M.; Williams, J.; Bosch, D. Assessment of different representations of spatial variability on SWAT model performance. Trans. ASABE 2010, 53, 1433–1443. [Google Scholar] [CrossRef]
- Wang, X.; Melesse, A. Evaluation of the SWAT model’s snowmelt hydrology in a northwestern Minnesota watershed. Trans. ASAE 2005, 48, 1359–1376. [Google Scholar] [CrossRef]
- Kumar, M.; Marks, D.; Dozier, J.; Reba, M.; Winstral, A. Evaluation of distributed hydrologic impacts of temperature-index and energy-based snow models. Adv. Water Resour. 2013, 56, 77–89. [Google Scholar] [CrossRef]
- Hock, R. A distributed temperature-index ice-and snowmelt model including potential direct solar radiation. J. Glaciol. 1999, 45, 101–111. [Google Scholar] [CrossRef]
- Cao, K.; Long, A.; Wang, J.; Liu, Y.; Cai, S.; Li, Y. Research and Application on Basin Accumulated Temperature Distribution (Atd) Model at the Snowmelt Flood Magnitude. J. North China Univ. Water Resour. Electr. Power 2017, 38, 10–18. [Google Scholar]
- Meng, X.; Ji, X.; Liu, Z.; Xiao, J.; Chen, X.; Wang, F. Research on improvement and application of snowmelt module in SWAT. J. Nat. Resour. 2014, 29, 528–539. [Google Scholar]
- Ferronskii, V.; Polyakov, V.; Brezgunov, V.; Vlasova, L.; Karpychev, Y.A.; Bobkov, A.; Romaniovskii, V.; Johnson, T.; Ricketts, D.; Rasmussen, K. Variations in the hydrological regime of Kara-Bogaz-Gol Gulf, Lake Issyk-Kul, and the Aral Sea assessed based on data of bottom sediment studies. Water Resour. 2003, 30, 252–259. [Google Scholar] [CrossRef]
- Romanovsky, V. Water level variations and water balance of Lake Issyk-Kul. In Lake Issyk-Kul: Its Natural Environment; Springer: Berlin/Heidelberg, Germany, 2002; pp. 45–57. [Google Scholar]
- uulu Salamat, A.; Abuduwaili, J.; Shaidyldaeva, N. Impact of climate change on water level fluctuation of Issyk-Kul Lake. Arab. J. Geosci. 2015, 8, 5361–5371. [Google Scholar] [CrossRef]
- Shabunin, G.; Shabunin, A. Climate and physical properties of water in Lake Issyk-Kul. In Lake Issyk-Kul: Its Natural Environment; Springer: Berlin/Heidelberg, Germany, 2002; pp. 3–11. [Google Scholar]
- Alifujiang, Y.; Abuduwaili, J.; Ma, L.; Samat, A.; Groll, M. System Dynamics Modeling of Water Level Variations of Lake Issyk-Kul, Kyrgyzstan. Water 2017, 9, 989. [Google Scholar] [CrossRef] [Green Version]
- Propastin, P. Assessment of climate and human induced disaster risk over shared water resources in the Balkhash Lake drainage basin. In Climate Change and Disaster Risk Management; Springer: Berlin/Heidelberg, Germany, 2013; pp. 41–54. [Google Scholar]
- Romanovsky, V.V.; Tashbaeva, S.; Crétaux, J.-F.; Calmant, S.; Drolon, V. The closed Lake Issyk-Kul as an indicator of global warming in Tien-Shan. Nat. Sci. 2013, 5, 32106. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Wang, Y.; Ding, Y.; Wang, C.; Sun, H.; Qin, X.; Jiang, C.; He, F. Assessment of impact of unbalancing power allocation on calculating maximum loading point. In Proceedings of the 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Xi’an, China, 25–28 October 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Wu, L.; Wang, S.; Bai, X.; Luo, W.; Tian, Y.; Zeng, C.; Luo, G.; He, S. Quantitative assessment of the impacts of climate change and human activities on runoff change in a typical karst watershed, SW China. Sci. Total Environ. 2017, 601, 1449–1465. [Google Scholar] [CrossRef] [PubMed]
- Braud, I.; Roux, H.; Anquetin, S.; Maubourguet, M.-M.; Manus, C.; Viallet, P.; Dartus, D. The use of distributed hydrological models for the Gard 2002 flash flood event: Analysis of associated hydrological processes. J. Hydrol. 2010, 394, 162–181. [Google Scholar] [CrossRef] [Green Version]
- Vincendon, B.; Ducrocq, V.; Saulnier, G.-M.; Bouilloud, L.; Chancibault, K.; Habets, F.; Noilhan, J. Benefit of coupling the ISBA land surface model with a TOPMODEL hydrological model version dedicated to Mediterranean flash-floods. J. Hydrol. 2010, 394, 256–266. [Google Scholar] [CrossRef]
- Fuka, D.R.; Easton, Z.M.; Brooks, E.S.; Boll, J.; Steenhuis, T.S.; Walter, M.T. A Simple Process-Based Snowmelt Routine to Model Spatially Distributed Snow Depth and Snowmelt in the SWAT Model 1. JAWRA J. Am. Water Resour. Assoc. 2012, 48, 1151–1161. [Google Scholar] [CrossRef]
- Green, C.; Van Griensven, A. Autocalibration in hydrologic modeling: Using SWAT2005 in small-scale watersheds. Environ. Model. Softw. 2008, 23, 422–434. [Google Scholar] [CrossRef]
- Ahl, R.S.; Woods, S.W.; Zuuring, H.R. Hydrologic calibration and validation of swat in a snow-dominated rocky mountain watershed, montana, USA 1. JAWRA J. Am. Water Resour. Assoc. 2008, 44, 1411–1430. [Google Scholar] [CrossRef]
- Haq, M. Snowmelt Runoff Investigation in River Swat Upper Basin Using Snowmelt Runoff Model, Remote Sensing and GIS Techniques; ITC: Hudsonville, MI, USA, 2008. [Google Scholar]
- Dudley, R.W.; Hodgkins, G.A.; Mchale, M.; Kolian, M.J.; Renard, B. Trends in snowmelt-related streamflow timing in the conterminous United States. J. Hydrol. 2017, 547, 208–221. [Google Scholar] [CrossRef] [Green Version]
- Stigter, E.E.; Wanders, N.; Saloranta, T.M.; Shea, J.M.; Bierkens, M.F.; Immerzeel, W.W. Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment. Cryosphere 2017, 11, 1647–1664. [Google Scholar] [CrossRef] [Green Version]
- Hock, R.; Jansson, P.; Braun, L.N. Modelling the response of mountain glacier discharge to climate warming. In Global Change and Mountain Regions; Springer: Berlin/Heidelberg, Germany, 2005; pp. 243–252. [Google Scholar]
- Luo, Y.; He, C.; Sophocleous, M.; Yin, Z.; Hongrui, R.; Ouyang, Z. Assessment of crop growth and soil water modules in SWAT2000 using extensive field experiment data in an irrigation district of the Yellow River Basin. J. Hydrol. 2008, 352, 139–156. [Google Scholar] [CrossRef]
- Braun, L.; Grabs, W.; Rana, B. Application of a conceptual precipitation-runoff model in the Langtang Khola basin, Nepal Himalaya. IAHS Publ.-Publ. Int. Assoc. Hydrol. Sci. 1993, 218, 221–238. [Google Scholar]
- Pomeroy, J.W.; Marks, D.; Link, T.; Ellis, C.; Hardy, J.; Rowlands, A.; Granger, R. The impact of coniferous forest temperature on incoming longwave radiation to melting snow. Hydrol. Process. Int. J. 2009, 23, 2513–2525. [Google Scholar] [CrossRef]
- Wang, X.; Luo, Y.; Sun, L.; Zhang, Y. Assessing the effects of precipitation and temperature changes on hydrological processes in a glacier-dominated catchment. Hydrol. Process. 2015, 29, 4830–4845. [Google Scholar] [CrossRef]
- Xiao, Y. A Method of Calculating Effective Accumulated Temperature Is Introduced Based on Daily Maximum and Minimum Temperature. Plant Prot. 1983, 9, 43–45. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Alifujiang, Y.; Abuduwaili, J.; Groll, M.; Issanova, G.; Maihemuti, B. Changes in intra-annual runoff and its response to climate variability and anthropogenic activity in the Lake Issyk-Kul Basin, Kyrgyzstan. Catena 2021, 198, 104974. [Google Scholar] [CrossRef]
- Deng, H.; Pepin, N.; Chen, Y. Changes of snowfall under warming in the Tibetan Plateau. J. Geophys. Res. Atmos. 2017, 122, 7323–7341. [Google Scholar] [CrossRef] [Green Version]
- Ficklin, D.L.; Barnhart, B.L. SWAT hydrologic model parameter uncertainty and its implications for hydroclimatic projections in snowmelt-dependent watersheds. J. Hydrol. 2014, 519, 2081–2090. [Google Scholar] [CrossRef] [Green Version]
- Dahri, Z.H.; Ahmad, B.; Leach, J.H.; Ahmad, S. Satellite-based snowcover distribution and associated snowmelt runoff modeling in Swat River Basin of Pakistan. Proc. Pak. Acad. Sci. 2011, 48, 19–32. [Google Scholar]
- Engelhardt, M.; Schuler, T.; Andreassen, L. Contribution of snow and glacier melt to discharge for highly glacierised catchments in Norway. Hydrol. Earth Syst. Sci. 2014, 18, 511–523. [Google Scholar] [CrossRef] [Green Version]
- Rosenwinkel, S.; Landgraf, A.; Schwanghart, W.; Volkmer, F.; Dzhumabaeva, A.; Merchel, S.; Rugel, G.; Preusser, F.; Korup, O. Late Pleistocene Outburst Floods from Issyk Kul, Kyrgyzstan? Earth Surf. Process. Landf. 2017, 42, 1535–1548. [Google Scholar] [CrossRef]
- Deng, H.; Chen, Y.; Wang, H.; Zhang, S. Climate change with elevation and its potential impact on water resources in the Tianshan Mountains, Central Asia. Glob. Planet. Chang. 2015, 135, 28–37. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, H.; Hagen, S.C.; Ye, M.; Wang, D.; Gui, D.; Zeng, C.; Tian, L.; Liu, J.S. Snow cover and runoff modelling in a high mountain catchment with scarce data: Effects of temperature and precipitation parameters. Hydrol. Process. 2015, 29, 52–65. [Google Scholar] [CrossRef]
- Merz, R.; Parajka, J.; Blöschl, G. Time stability of catchment model parameters: Implications for climate impact analyses. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Sexton, A.; Sadeghi, A.; Zhang, X.; Srinivasan, R.; Shirmohammadi, A. Using NEXRAD and rain gauge precipitation data for hydrologic calibration of SWAT in a northeastern watershed. Trans. ASABE 2010, 53, 1501–1510. [Google Scholar] [CrossRef]
- Zhou, Z.; Bi, Y. Improvement of Swat Model and Its Application in Simulation of Snowmelt Runoff. In Proceedings of the National Symposium on Ice Engineering, Hohhot, China, 1 July 2011. [Google Scholar]
- Yanmei, T.; Weize, M.; Xinjian, L.; Hui, W. Study on the models of predicting the annual accumulated temperature in the main cotton-production regions in Xinjiang. Arid. Zone Res. 2005, 22, 259–263. [Google Scholar]
- Gafurov, A.; Kriegel, D.; Vorogushyn, S.; Merz, B. Evaluation of remotely sensed snow cover product in Central Asia. Hydrol. Res. 2013, 44, 506–522. [Google Scholar] [CrossRef]
- Richard, C.; Gratton, D. The importance of the air temperature variable for the snowmelt runoff modelling using the SRM. Hydrol. Process. 2001, 15, 3357–3370. [Google Scholar] [CrossRef]
- Duan, Y.; Liu, T.; Meng, F.; Yuan, Y.; Luo, M.; Huang, Y.; Xing, W.; Nzabarinda, V.; De Maeyer, P. Accurate simulation of ice and snow runoff for the mountainous terrain of the kunlun mountains, China. Remote Sens. 2020, 12, 179. [Google Scholar] [CrossRef] [Green Version]
- Mernild, S.H.; Liston, G.E. The influence of air temperature inversions on snowmelt and glacier mass balance simulations, Ammassalik Island, Southeast Greenland. J. Appl. Meteorol. Climatol. 2010, 49, 47–67. [Google Scholar] [CrossRef]
- Cazorzi, F.; Dalla Fontana, G. Snowmelt modelling by combining air temperature and a distributed radiation index. J. Hydrol. 1996, 181, 169–187. [Google Scholar] [CrossRef]
- Lu, X.; Xie, G.; Li, Y.; Chen, S. Variation characteristics of snow cover and the relation to air temperature and precipitation in Manasi River Basin. Desert Oasis Meteorol. 2010, 4, 35–39. [Google Scholar]
- Zhao, C.; Yan, X.; Li, D.; Wang, Y.; Luo, Y. The variation of snow cover and its relationship to air temperature and precipitation in Liaoning Province during 1961–2007. J. Glaciol. Geocryol. 2010, 32, 461–468. [Google Scholar]
- Xu, L.; Wu, B. Relationship between Eurasian snow cover and late-spring and early-summer rainfall in China in 2010. Plateau Meteorol. 2012, 31, 706–714. [Google Scholar]
- Wang, P.; Mu, Z. Study on Relationship of Snowmelt Runoff with Snow Area and Temperature in Km River Basin. J. Water Resour. Water Eng. 2013, 24, 28–31. [Google Scholar]
- Aizen, V.; Aizen, E.; Nesterov, V.; Sexton, D. A study of glacial runoff regime in Central Tien Shan during 1989–1990. J. Glaciol. Geocryol. 1993, 3, 442–459. [Google Scholar]
- Zhang, Y.; Luo, Y.; Sun, L. Quantifying future changes in glacier melt and river runoff in the headwaters of the Urumqi River, China. Environ. Earth Sci. 2016, 75, 770. [Google Scholar] [CrossRef]
- Rulin, O.; Liliang, R.; Weiming, C.; Zhongbo, Y. Application of hydrological models in a snowmelt region of Aksu River Basin. Water Sci. Eng. 2008, 1, 1–13. [Google Scholar]
- Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 2003, 282, 104–115. [Google Scholar] [CrossRef]
- Iwata, Y.; Nemoto, M.; Hasegawa, S.; Yanai, Y.; Kuwao, K.; Hirota, T. Influence of rain, air temperature, and snow cover on subsequent spring-snowmelt infiltration into thin frozen soil layer in northern Japan. J. Hydrol. 2011, 401, 165–176. [Google Scholar] [CrossRef]
Location | A | B | ||||||
---|---|---|---|---|---|---|---|---|
Average | Temperature for Rainfall | Temperature for Snowfall | Temperature for Rainfall | Temperature for Snowfall | ||||
ACC.T | MAX.T | ACC.T | MAX.T | ACC.T | MAX.T | ACC.T | MAX.T | |
2015 | 39.12 | 16.42 | 28.51 | 14.84 | 27.91 | 11.94 | 29.4 | 12.5 |
2016 | 42.06 | 15.94 | 35.43 | 19.02 | 36.12 | 14.25 | 24.21 | 13.7 |
Average | 40.59 | 16.18 | 31.97 | 16.93 | 32.01 | 13.09 | 26.80 | 13.1 |
A | B | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Before Modification | After Modification | Before Modification | After Modification | |||||||||
No | Parameter | T-Test | p-Value | Parameter | T-Test | p-Value | Parameter | T-Test | p-Value | Parameter | T-Test | p-Value |
1 | SMTMP | 0.05 | 0.85 | SMTMP | 0.04 | 0.95 | SNO_SUB | 0.24 | 0.81 | SMTMP_accu | 0.04 | 0.96 |
2 | SNO_SUB | −0.08 | 0.81 | TLAPS | 0.04 | 0.94 | SMTMP | −0.68 | 0.79 | TLAPS | 0.04 | 0.94 |
3 | TLAPS | −0.32 | 0.75 | SMTMP_accu | −0.1 | 0.90 | SFTMP | −0.33 | 0.71 | SFTMP_accu | −0.1 | 0.92 |
4 | SNOCOVMX | −0.34 | 0.69 | SFTMP_accu | 0.14 | 0.89 | SMFMX | −0.44 | 0.69 | SNO_SUB | −0.15 | 0.87 |
5 | SFTMP | −0.37 | 0.61 | SFTMP | 0.20 | 0.85 | TLAPS | −0.47 | 0.61 | PLAPS | 0.20 | 0.86 |
6 | SMFMX | 0.50 | 0.59 | SNO_SUB | 0.24 | 0.80 | SOL_AWC | 0.48 | 0.58 | SFTMP | 0.24 | 0.81 |
7 | PLAPS | −0.49 | 0.57 | PLAPS | 0.33 | 0.75 | PLAPS | −0.58 | 0.57 | SMTMP | 0.33 | 0.79 |
8 | SOL_AWC | 0.83 | 0.41 | SNOCOVMX | 0.60 | 0.63 | SNOCOVMX | 0.61 | 0.40 | SNOCOVMX | 0. | 0.71 |
9 | ESCO | 2.78 | 0.39 | SMFMX | 0.68 | 0.60 | SMFMX | 1.58 | 0.29 | SMFMX | 0.75 | 0.69 |
10 | SMFMN | −0.79 | 0.03 | SMFMN | 0.77 | 0.57 | SMFMN | −0.80 | 0.08 | SMFMN | 0.80 | 0.51 |
CB | CA | ||||
---|---|---|---|---|---|
Parameter Description | Unit | CV(A) | CV(B) | CV(A) | CV(B) |
Snowfall temperature (SFTMP) | °C | 3.67 | 4.5 | 3.89 | 4.68 |
Snowfall (SFTMP_accu) | °C | 31.97 | 25.6 | 31.8 | 25.5 |
Snowmelt base temperature (SMTMP) | °C | 2.42 | 3.8 | 2.69 | 3.89 |
Snowmelt base (SMTMP_accu) | °C | 28.51 | 29.4 | 28.39 | 28.9 |
Melt factor for snow on 21 June (SMFMX) | mmH2O/°C-day | 6.87 | 2.93 | 6.81 | 2.83 |
Melt factor for snow on 21 December (SMFMN) | mmH2O/°C-day | 9.76 | 5.62 | 9.77 | 5.61 |
Temperature lapse rate (TPLAS) | °C.km−1 | −7.46 | 2.32 | −7.44 | 2.33 |
Precipitation lapse rate (PLAPS) | mm.km−1 | 24 | 21 | 25 | 22 |
Before Modification | After Modification | |||||
---|---|---|---|---|---|---|
NSE | R2 | PBIAS (%) | NSE | R2 | PBIAS (%) | |
Calibration | 0.72 | 0.73 | 2.56 | 0.80 | 0.84 | 1.51 |
Validation | 0.67 | 0.69 | 1.24 | 0.79 | 0.79 | −2.2 |
Overall | 0.64 | 0.72 | 5.75 | 0.75 | 0.87 | 4.31 |
Before Modification | After Modification | |||||
---|---|---|---|---|---|---|
NSE | R2 | PBIAS (%) | NSE | R2 | PBIAS (%) | |
Calibration | 0.69 | 0.74 | 4.71 | 0.75 | 0.75 | 3.79 |
Validation | 0.73 | 0.73 | 1.02 | 0.79 | 0.81 | 0.94 |
Overall | 0.61 | 0.75 | 6.5 | 0.69 | 0.86 | 4.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uwamahoro, S.; Liu, T.; Nzabarinda, V.; Habumugisha, J.M.; Habumugisha, T.; Harerimana, B.; Bao, A. Modifications to Snow-Melting and Flooding Processes in the Hydrological Model—A Case Study in Issyk-Kul, Kyrgyzstan. Atmosphere 2021, 12, 1580. https://doi.org/10.3390/atmos12121580
Uwamahoro S, Liu T, Nzabarinda V, Habumugisha JM, Habumugisha T, Harerimana B, Bao A. Modifications to Snow-Melting and Flooding Processes in the Hydrological Model—A Case Study in Issyk-Kul, Kyrgyzstan. Atmosphere. 2021; 12(12):1580. https://doi.org/10.3390/atmos12121580
Chicago/Turabian StyleUwamahoro, Solange, Tie Liu, Vincent Nzabarinda, Jules Maurice Habumugisha, Theogene Habumugisha, Barthelemy Harerimana, and Anming Bao. 2021. "Modifications to Snow-Melting and Flooding Processes in the Hydrological Model—A Case Study in Issyk-Kul, Kyrgyzstan" Atmosphere 12, no. 12: 1580. https://doi.org/10.3390/atmos12121580
APA StyleUwamahoro, S., Liu, T., Nzabarinda, V., Habumugisha, J. M., Habumugisha, T., Harerimana, B., & Bao, A. (2021). Modifications to Snow-Melting and Flooding Processes in the Hydrological Model—A Case Study in Issyk-Kul, Kyrgyzstan. Atmosphere, 12(12), 1580. https://doi.org/10.3390/atmos12121580