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Abstract: While mountain runoff provides great potential for the development and life quality of
downstream populations, it also frequently causes seasonal disasters. The accurate modeling of
hydrological processes in mountainous areas, as well as the amount of meltwater from ice and snow,
is of great significance for the local sustainable development, hydropower regulations, and disaster
prevention. In this study, an improved model, the Soil Water Assessment Tool with added ice-melt
module (SWATAI) was developed based on the Soil Water Assessment Tool (SWAT), a semi-distributed
hydrological model, to simulate ice and snow runoff. A temperature condition used to determine
precipitation types has been added in the SWATAI model, along with an elevation threshold and an
accumulative daily temperature threshold for ice melt, making it more consistent with the runoff

process of ice and snow. As a supplementary reference, the comparison between the normalized
difference vegetation index (NDVI) and the quantity of meltwater were conducted to verify the
simulation results and assess the impact of meltwater on the ecology. Through these modifications, the
accuracy of the daily flow simulation results has been considerably improved, and the contribution
rate of ice and snow melt to the river discharge calculated by the model increased by 18.73%.
The simulation comparison of the flooding process revealed that the accuracy of the simulated peak
flood value by the SWATAI was 77.65% higher than that of the SWAT, and the temporal accuracy was
82.93% higher. The correlation between the meltwater calculated by the SWATAI and the NDVI has
also improved significantly. This improved model could simulate the flooding processes with high
temporal resolution in alpine regions. The simulation results could provide technical support for
economic benefits and reasonable reference for flood prevention.

Keywords: SWAT; ice-melt; flood processes; accumulated temperature; NDVI; Tizinafu River Basin (TRB)

1. Introduction

As an important part of the world’s high-altitude mountains, glaciers and snow provide abundant
water resources [1–3]. Most of the world’s great rivers collect source water from glaciers or snow-covered
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mountains at high altitudes [4]. Along with the more studies of global climate change [5–8], the studies
on glaciers and snow cover have been receiving increasing attention [9]. Although these glaciers
and snow covers could provide large amounts of water resources [10], they could also cause serious
disasters. When considering ways in which to utilize these resources, the fundamental approach is to
determine the amount and features of meltwater at a specified location. In the context of global climate
change, more experts have combined remote sensing data of glacier snow cover with hydrological
processes [4,11–14] to overcome the data lack situation.

With the background of glacier retreatment in recent decades in the mountainous areas of Central
Asia and the Xinjiang region of Northwest China [6,15–21], the importance of hydrological modeling
is becoming increasingly evident [22]. Various empirical methods and algorithms have commonly
been used in the calculation of ice and snow melt, such as the method of glacier mass balance using
the relationship between the volume and surface ratio of glaciers [23–26]. Subsequently, numerous
studies have also been conducted on the hydrological processes of glacier-dominated watersheds in
the context of future climate change [27–33]. Indeed, some semi-distributed models in combination
with conceptual models have also been applied in hydrology-related studies of glacier changes.
Moreover, the distributed hydrological models based on physics have also been increasingly utilized in
relevant glacier studies, such as calculating the amount of ice and snow melt, simulating river runoff,
to determine the relationship between glaciers and the environment [22]. The SWAT model [22,34,35],
as the outstanding representative of distributed hydrological models, is based on energy balance,
physical balance, and water balance, including soil, land use, meteorological, and hydrological
management modules [4,36]. Most importantly, as an open-source hydrological model, SWAT provides
a window into model optimization and modification.

Since emphasis has been placed on glacier changes in the context of climate change on a large
scale and over a long time series [37–43], some researchers proposed an improved SWAT-based
computational framework of critical source areas identification at the lake basin scale, which improved
the ability of supplying a more comprehensive delineation of critical source areas [44]. In the studies of
the SWAT model in the process of mountainous runoff [45,46], some scholars have tried to evaluate
the impacts of temperature and precipitation changes on runoff and streamflow by trying to add ice
melting algorithms [4,47,48]. While the hydrological process of meltwater in a watershed scale at
a high temporal resolution has rarely been studied. In high-incidence areas of ice and snow melt,
flooding simulation with high temporal resolution is indispensable.

In the past, very few studies have been able to perform the hourly scale processes of snow melting
and ice melting floods in the alpine region under complex climate conditions. In order to overcome
these issues, the topography and climate characteristics of alpine area are fully considered in the
discrimination of precipitation form, and the influence of accumulated temperature on precipitation
form was added into the new modular. The main goal of this study was to embed a new ice-melt
module into the original SWAT model; the segmentation of the ice and snow melt calculation was
performed by setting the elevation threshold. Hourly simulation was performed based on the daily
time scale in order to delineate the detailed flood process. In order to better explore the relationship
between meltwater and local ecology, a comparison between the NDVI of long time series and the
calculation of the model’s meltwater was conducted. This study can provide technical support and act
as an important reference for flood disaster prevention, water conservancy construction, ecological
restoration, and other environmental concerns.

2. Materials and Methods

2.1. Study Area

The study area is the Tizinafu River Basin (TRB), located in the Kunlun Mountains of the southwest
portion of the Xinjiang region in Northwest China (Figure 1). The landscape in this region is composed
primarily of rock, sand, and gravel, with sparse vegetation. Only a small amount of vegetation exists
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in the valleys. The lowest elevation within the basin is 1,400 m, located in the lower part of the basin in
Yecheng County area, and the highest elevation is 6,320 m, which is also the source of the river, the
Keerake Daban and Yanggai Daban. The total area of the TRB is approximately 5,600 km2. Affected
by topographic conditions, the diurnal range in the basin is large. The climate of the TRB can be
divided into the melting season and the non-melting season. In spring, temperatures start to rise, snow
and glaciers gradually begin to melt, and the river channel is recharged. In the beginning of October,
temperatures in the mountainous areas drop rapidly and snowfall occurs in high-altitude areas as the
TRB gradually enters the non-melting season.
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2.2. Materials

The digital elevation model (DEM), which is obtained from (http://srtm.csi.cgiar.org/) the Shuttle
Radar Topography Mission (SRTM), has a spatial resolution of 30 meters and served as the primary
data source for the watershed division and model calculation. Both spatial resolutions of the soil type
data from the China Soil Category Data Network (https://geodata.pku.edu.cn/) as well as the land
use and land cover (LUCC) data from the visual interpretation of imagery (https://www.usgs.gov/

products/data-and-tools/real-time-data/remote-land-sensing-and-landsat) were 30 meters. Eight-day
snow cover product of the Moderate Resolution Imaging Spectroradiometer (MODIS) is used as
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calibration reference and initial conditions (https://modis.gsfc.nasa.gov/data/dataprod/mod10.php).
Glacier data from the Randolph Glacier Inventory, are derived from Global Land Ice Measurements
from Space (GLIMS) (http://www.glims.org/RGI/). In order to compare the relationship between
the calculated meltwater and the NDVI for a long time series, the NDVI data were calculated from
8-day surface reflectance data MOD09Q1 (https://modis.gsfc.nasa.gov/data/dataprod/mod09.php).
The ERA-Interim from the European Centre for Medium-Range Weather Forecasts (ECMWF) was used
as the meteorological reanalysis data (https://www.ecmwf.int/).

The meteorological and hydrological observation are used as model input based on the national
stations. According to the data from 2010 to 2014, the average daily temperature of the river basin was
approximately 7 ◦C, and the average annual discharge was approximately 35.22 m3

·s−1.
The classification and statistics of the land use and land cover (Table 1) shows that the glacier

and snowfield take considerable portion of study area. The area of glacier and snowfield in the study
region was as high as 469.96 km2, accounting for 8.35% of the total area. Snow and glacial meltwater
provided a certain source of water for the basin, especially during the spring season when rainfall
was scarce. Due to such a large area of snow and glaciers, the melting water produces seasonal floods
and posed a serious threaten to the downstream residential areas. Through this study, it was able
to simulate the hydrological process during flood season in mountain areas and provide technical
support for disaster prevention.

Table 1. LUCC statistics information table in the study area.

LUCC Area (km2) Percentage (%)

Glacier and snowfield 469.96 8.35
Bare soil 815.54 14.49
Bare rock 324.38 5.77
Meadow 1249.17 22.20

Sparse grass 1324.22 23.54
River 69.67 1.24
Marsh 5.65 0.10

Evergreen coniferous shrub 3.98 0.07
Grassland 1202.74 21.38

Broadleaved deciduous forest 3.49 0.06
Evergreen needleleaved forest 138.68 2.46

Dryland 17.42 0.31
Settlement place 1.51 0.03

2.3. Methods

2.3.1. Calculation of Accumulated Temperature

Daily temperatures generally increase initially, then decrease gradually after the maximum value
has been reached, with the overall change approximating a sinusoidal curve. The 24 h in a day can be
replaced by 0−π, and the daily temperature can be expressed by the formula

Tday = (Tmx − Tmn) sin t + Tmn 0 ≤ t ≤ π, (1)

The accumulated temperature in a day can be calculated by the formula

T

=



∫ π

0
(Tmx − Tmn) sin t + Tmn dt, 0 ≤ t ≤ π∫ π−sin−1( −Tmn

Tmx−Tmn )

sin−1( −Tmn
Tmx−Tmn )

Tmx sin t dt,sin−1(
−Tmn

Tmx − Tmn
),≤ t ≤ π− sin−1(

−Tmn

Tmx − Tmn
)

,
(2)

https://modis.gsfc.nasa.gov/data/dataprod/mod10.php
http://www.glims.org/RGI/
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where Tday is the temperature at any time of the day, T is the daily accumulated temperature, Tmx and
Tmn represent the maximum and minimum daily temperatures, respectively, t is the radian at any
time of the day, and sin−1( −Tmn

Tmx−Tmn
), π− sin−1( −Tmn

Tmx−Tmn
) are the radians corresponding to 0 ◦C. When

the minimum daily temperature was > 0 ◦C, the first formula in Equation (2) was used to calculate the
accumulated temperature; when the minimum temperature was < 0 ◦C but the maximum temperature
was > 0 ◦C, the second formula in Equation (2) was used [49,50].

The logical approach of this study is shown in Figure 2. Firstly, the precipitation type is determined
by expanding the temperature condition in alpine areas and on cold, high mountains. Only when
the maximum daily temperature (Tmax) and the accumulated daily temperature (Taccu) were greater
than both the snowfall temperature threshold (SFTMP) and the snowfall accumulated temperature
threshold (SFTMPaccu), the precipitation type is determined as rainfall; otherwise, it is snowfall.
The elevation threshold between snow and ice (ETSI) is also added to differentiate snow and ice.
The added parameters would improve the performance of the original degree day factor method in
more reasonable way. By adding the accumulated temperature threshold (IMTM_A) and the melting
temperature threshold (IMTP), ice melt could be simulated by new module. Based on the daily
accumulated temperature, a new hourly-scale model simulation was added to evaluate the flood
process in mountainous areas. The relationship between long time series meltwater calculation and
the NDVI was added in order to evaluate model improvement from an ecological perspective.Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 23 
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2.3.2. Calculation of Ice Melt

Glaciers are often distributed in higher altitudes mountainous areas. Snow cover is usually wider
in areas with lower altitudes due to seasonal variations. Therefore, the elevation threshold can be
set for segmentation. The ice melt runoff was calculated based on the ice cover condition, and the
temperature threshold of the ice melt runoff. The equation for ice melt is

ICEmlt = Bmlt·icecov·

[Tice + Tmx

2
− Tmlt

]
, (3)

where ICEmlt is the amount of ice melt on a given day (mm H2O), Bmlt is the melt factor for the day (mm
H2O/day-◦C), icecov is the fraction of the hydrological response unit (HRU) area, Tice is the temperature
of the ice base, Tmx is the maximum air temperature on a given day (◦C), and Tmlt represents the
temperature threshold when the ice melting conditions are reached (◦C).

The ice base temperature was an important parameter for the ice melting calculation. Due to
temperature hysteresis, the determination of Tice is influenced by conditions during the previous days
and varied with temperature. The Tice formula can be expressed as

Ticedn = Ticedn−1 ·
(1− λice) + Tav·λice , (4)

Ticedn is the ice base temperature on a given day (◦C), λice is the lagging ice base temperature
on the previous day (◦C), and Tav is the average air temperature on the current day (◦C). The most
important factor influencing the ice base temperature was the effect of the previous day’s temperature
on the current day. The lagging factor λice was included to account for this influence.

The equation for the Bmlt calculation is

Bmlt =

(
bmltJ + bmlt12D

)
2

+

(
bmltJ − bmltD

)
2

· sin
( 2π

365
·(dn − 81)

)
, (5)

where bmltJ is the melt factor for June 21 (mm H2O/day-◦C), bmltD is the melt factor for December 21
(mm H2O/day-◦C), and dn is the numerical day of the year.

Although the new approach of ice melting calculation method originates from the degree day factor
method, the added restrictions and new calculation algorithm make the simulation more reasonable.
The determinations of precipitation types as well as the temperature condition triggering a melting
event are established prior to the calculation of ice melt. This temperature condition was determined by
the daily accumulated temperature combined with the maximum temperature. The sub-temperature
judgment condition corresponds to the characteristics of ‘one day–one peak’ flood events and the rapid
eruption of ice/snow melt in mountainous areas.

2.3.3. Calibration, Validation, and Sensitivity

The sensitivity analyses, calibration, and validation were all indispensable steps of modeling work.
In this study, the Soil Water Assessment Tool Calibration and Uncertainty Procedure (SWAT-CUP) [51]
was used for the above steps. During the 2011–2014 research period, the first 2 years served as the
preheat period of the model, while the years 2013 and 2014 were the calibration and validation periods,
respectively. When evaluating model simulation results, the coefficient of determination (R2), the
Nash–Sutcliffe efficiency (NSE), and the percent bias (PBIAS) are usually utilized. The calculation
formula of R2 is

R2 =


∑n

i=1(Qsim,i −Qsim,i)
(
Qobs,i −Qobs,i

)
√∑n

i=1 (Qsim,i −Qsim,i)
2 ∑n

i=1

(
Qobs,i −Qobs,i

)2


2

, (6)
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The range of R2 is 0–1; the closer to 1, the better. The NSE ranges from − ∞ to 1. Similarly, the
closer the NSE is to 1, the more ideal the model results; the further from 1, the worse the results. The
calculation formula of the NSE is

NSE = 1−

∑n
i=1

(
Qobs,i −Qsim,i

)2

∑n
i=1

(
Qobs,i −Qobs,i

)2 , (7)

The main performance of PBIAS indicators was the state of the simulation of the model compared
with the measured values. The positive value of PBIAS indicates that the simulation results of the
model are overestimated, while the negative value indicates underestimation. The formula is

PBIAS =

∑n
i=1(Qsim,i −Qobs,i)∑n

i=1 Qobs,i
100 , (8)

The model’s performance is rated as either ‘very good’ (PBIAS < ± 10%), ‘good’ (± 10% ≤ PBIAS
< ± 15%), ‘satisfactory’ (± 15% ≤ PBIAS < ± 25%), or ‘unsatisfactory’ (± 25% ≤ PBIAS). The variable n
is the total number of the observations. Qobs,i and Qsim,i in the formulas are the ith-day observation
(m3
·s−1) and the model-simulated discharge (m3

·s−1), respectively; and Qsim,i and Qobs,i are the average
simulation and observation (m3

·s−1), respectively.
Parameter sensitivity analysis can effectively help to determine the optimal combination of model

parameters [52]. The sequential uncertainty fitting (SufI-2) algorithm is an important method for
sensitivity and uncertainty analyses, in which global sensitivity analysis was the method of partial
sensitivity analysis adopted in this study [53,54]. In this method, T-state and p-value are important
indices in the evaluation of parameter sensitivity. This technique was used to test samples with a
T-state hypothesis; the larger the better. The p-value is the probability value corresponding to the t-test
value; the closer the p-value of a parameter is to 0, the greater its significance.

3. Results

3.1. Daily Simulations

The daily-scale simulation results before and after the model modification were compared with the
observed discharge, in which the calibration period was studied regularly in 2013 and the validation
period was in 2014 (Table 2). Three indices of the model before and after modification were used for
the calibration, validation, and overall periods. This comparison revealed that during the calibration
period the R2 value increased from 0.8 to 0.87, the NSE increased from 0.73 to 0.77, and the PBIAS
improved from 5.42% to 4.55%. During the validation period, all indices of the new SWATAI model
are better than the original one, increasing from 0.78% to 0.84%, 0.71% to 0.75%, and −6.89% to 4.85%.
During the overall period, the R2, NSE, and PBIAS of comparison results were consistent to those in
the calibration and validation periods, with improving 0.05, 0.05, and 3.23%, respectively.

Table 2. Evaluation of simulation results before and after model modification.

Period
R2 NSE PBIAS (%)

SWAT SWATAI SWAT SWATAI SWAT SWATAI

Calibration (2013) 0.80 0.87 0.73 0.77 5.42 4.55
Validation (2014) 0.78 0.84 0.71 0.75 −6.89 4.85

Overall (2013–2014) 0.77 0.82 0.69 0.74 8.65 5.42

Each May, the replenishment of river runoff is mainly the result of ice and snow melt. Observations
indicate that there was a flood process during this period and the original model could not catch this
process (Figure 3). While, the model with new module precisely simulated this flush flood, and the
peak value as well as the entire hydrograph were well described. By July and August, the snow at low
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elevations has almost disappeared, and the water source of the river mainly comes from ice-melt at
high elevations. This period is also the good opportunity to test the performance of new modification.
During this period, multiple flood processes were not well simulated by the original SWAT model,
because the multiple flood processes were presented as single event and the simulated flood peak was
significantly overestimated. While, the SWATAI model can precisely describe the flood process in
terms of both timing and value. By the end of August, river runoff has progressively diminished, and
there is less ice melt. In the non-snow-melt season after September, the original SWAT model obviously
overestimated the recession processes, while the SWATAI model had much better results. The model
performance of SWATAI had quite reasonable results in both calibration and validation period.
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3.2. Sub-Daily Simulations

In order to examine the ice-melt and snow-melt flood processes in more detailed way, a comparative
study of the hourly scale flooding process was carried out. During the melting season from May to
September, the typical flood events were selected as targets. In Figure 4, it can be seen that the duration
of each complete ice/snow-melt flood event last for a relatively short period, generally less than 24 h.
If the hydrographs were examined in the aspects of timing and value for each month, the original
model produced the lower baseflow, higher and earlier flood peak. This simulation flaw was totally
eliminated by the modified model. During the recession period in September, the hydrograph from
modified model caught the observation value very well, much better than the original model. Similar
outputs were also occurred in the validation period (Figure 5). The original model gave out the results
with the significant bias, its flood peaks have larger temporal shifts, overestimation/underestimation,
and impropriate flood duration.

The deviations of flood peak values and timing shifts were statistically summarized for each flood
events by the original SWAT model and the SWATAI model. Table 3 indicates that original SWAT
model has relatively large errors during the calibration period, the minimum and maximum errors
of the peak flood values were −2.88 m3

·s−1 in September, and 63.13 m3
·s−1 in June; the minimum

and maximum temporal errors were −1 hour in August, and 8 h in June. After adding the ice-melt
module, the error of the peak flood value in June was reduced to 8.83 m3

·s−1, and the temporal error
was reduced to −1 hour. During the validation period of 2014, the model with new modular also
perform better than the original model. The deviations of the flood peak and timing shift in original
model were even larger, with a peak value error of −10.15 m3

·s−1 to 96.05 m3
·s−1, and a timing shift

error −8 h to 0 h. By adding the ice-melt module, the peak error shrank to 26.94 m3
·s−1,the timing shift

was consistently less than 2 h.
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Table 3. Deviation statistics of peak flood processes before and after model modification.

Date
Deviation of Flood Peak Value (m3

·s−1) Deviation of Timing (h)

SWAT SWATAI SWAT SWATAI

2013.5 14.52 3.88 7 0
2013.6 63.13 8.83 8 −1
2013.7 14.33 11.59 3 −1
2013.8 57.05 9.7 −1 0
2013.9 −2.88 −2.16 2 1

2014.5 52.7 5.04 −8 2
2014.6 11.23 4.37 −6 0
2014.7 26.25 −2.29 0 0
2014.8 96.05 26.94 −2 1
2014.9 −10.15 −3.03 4 −1
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3.3. Effects of Parameters on the Simulated Results

In order to catch the major processes of ice/snow melt in nature, a new ice-melt module was added
to the original model with some essential parameters which can properly describe the nature processes
(Table 4). There were a total of six ice-melt–related parameters designed in this study: ice-melt base
temperature (IMTP), ice-melt base accumulated temperature (IMTP_A), maximum melt rate for ice
during the year (IMFMX), minimum melt rate for ice during the year (IMFMN), elevation threshold
between snow and ice (ETSI), and ice temperature lag factor (ITIMP). If the parameters are examined
from the temporal point of view, IMTP on the daily and hourly scale was 5.39 ◦C and was 5.87 ◦C,
while IMTP_A on the daily and hourly scale was 24.68 ◦C and 26.77 ◦C Meanwhile, ETSI, IMFMX,
and IMFMN did not change appreciably. In the process of model parameter optimization, it was
impossible to get the only optimal solution. The general software also gives the parameter range, only
through constant calibration, the optimal parameter combination and parameter value can be obtained
within the parameter range [55,56].

Table 4. Important parameters in the model calibration process.

File
Extension Parameter Description Range of

Values
Daily Simulation
Calibrated Value

Sub-daily Simulation
calibrated Value

.bsn(New) ETSI Elevation threshold between snow and ice 2000–6000 3500 3500

.bsn(New) IMTP Ice-melt base temperature −40 5.39 5.87

.bsn(New) IMTP_A Ice-melt base accumulated temperature 0–40 24.68 26.77

.bsn(New) IMFMX Maximum melt rate for ice during the year 0–20 12.35 13.04

.bsn(New) IMFMN Minimum melt rate for ice during the year 0–20 15.87 16.55

.bsn(New) ITIMP Ice temperature lag factor 0–1 0.61 0.65

.bsn(New) SFTMP_A Snowfall accumulated temperature 0–40 28 29
.bsn SFTMP Snowfall temperature −20 to 20 3.27 3.46
.bsn SMTMP Snow-melt base temperature −20 to 20 3.06 2.85
.bsn SMFMX Maximum melt rate for snow during the year 0–20 7.62 7.57
.bsn SMFMN Minimum melt rate for snow during the year 0–20 9.4 8.19
.bsn TIMP Snowpack temperature lag factor 0–1 0.55 0.54

.bsn SNOCOVMX Minimum snow water content corresponding
to 100% snow cover 0–500 38.33 37.84

.bsn SFTMP Snowfall temperature −40 3.36 3.47

.bsn SURLAG Surface runoff lag time 0.05–24 11.78 11.43
.gw ALPHA_BF Base flow alpha factor (days) 0–1 0.15 0.18
.gw GW_DELAY Groundwater delay (days) 0–500 222.68 224.12

.gw GWQMN Threshold water depth in the shallow aquifer
required for return flow to occur (mm) 0–5000 1175.84 1205.64

.gw SHALLST Initial water depth in the shallow aquifer (mm) 0–50,000 4903.68 4958.74

.gw GW_REVAP Groundwater “revamp” coefficient 0.02–0.2 0.06 0.05
.mgt CN2 SCS runoff curve number 35–98 70.79 72.35
.ohru OV_N Manning’s “n” value for overland flow 0.01–30 10.77 11.12
.ohru ESCO Soil evaporation compensation factor 0–1 0.37 0.35
.ohru EPCO Plant uptake compensation factor 0–1 0.39 0.32
.rte CH_N2 Manning’s “n” value for the main channel −0.01 to 0.3 0.01 0.01

.rte CH_K2 Effective hydraulic conductivity in main
channel alluvium −0.01 to 500 47.38 48.12

.sol SOL_K Saturated hydraulic conductivity 0–2000 861.31 874.58

.sol SOL_AWC Available water capacity of the soil layer 0–1 0.32 0.36
.sub PLAPS Precipitation lapse rate −20 to 20 −5.5 −5.36
.sub TLAPS Temperature lapse rate −10 to 10 −7.59 −7.64
.sub CH_N1 Manning’s “n” value for the tributary channels 0.01–30 5.42 5.13

.sub CH_K1 Effective hydraulic conductivity in tributary
channel alluvium 0–300 295.67 271.36

.sub SNO_SUB Initial snow water content 0–150 95.39 97.33

The sensitivity values of 32 parameters involved in model calibration at both daily and hourly
scales were analyzed. As can be seen in Table 5, CH_K2 was the most sensitive parameter, with a
T-state value of 21.67 and a p-value of 0. PLAPS was also highly sensitive, with a T-state value of 18.53
and a p-value of 0. The newly-added ice-melt parameter IMTP_A had a T-state value of 12.06 and a
p-value of 0, indicating high sensitivity. The T-state value of IMTP was 9.05, and its p-value was 0. The
T-state value of the ETSI parameter was 8.25, and its p-value was 0.01, also revealing high sensitivity.
Although the sensitivity levels of IMFMX and IMFMN were slightly lower, they displayed a certain
sensitivity as well. In addition, relevant parameters involved in snow-melt and ice-melt calculations,
such as SMTMP, TLAPS, SMFMX, and SFTMP, all exhibited a certain amount of sensitivity.
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Table 5. Parameter information for global sensitivity.

Parameter T-states p-Value

CH_K2 21.67 0
PLAPS 18.53 0

IMTP_A 12.06 0
SMTMP 10.98 0.01
TLAPS 9.76 0.01
IMTP 9.05 0.01
ETSI 8.25 0.01

LAT_TTIME 6.89 0.02
SMFMX 6.05 0.02
SOL_K 5.36 0.03
IMFMX 5.09 0.03

SOL_AWC 4.68 0.05
IMFMN 4.47 0.05

SURLAG 3.28 0.06
TIMP 2.64 0.17
ITIMP 2.36 0.18

GWQMN 1.49 0.26
SNO_SUB 1.05 0.34
REVAPMN 1.01 0.57

EPCO 0.72 0.64
SMFMN 0.43 0.79
CH_N2 0.38 0.82

RCHRG_DP(Deep aquifer percolation fraction) 0.21 0.89
OV_N −0.02 0.91

CH_N1 −0.57 0.71
SNOCOVMX −1.05 0.53

SHALLST −1.24 0.51
ALPHA_BF −2.49 0.43

CN2 −3.07 0.39
CH_K1 −3.14 0.34
SFTMP −3.88 0.26

GW_DELAY −4.01 0.14

3.4. Relationship between NDVI and Model Modification

The snow and ice melting in the arid and semi-arid areas are of great significance to the local
ecology and production, including the green vegetation in spring and the crop planting in the lower
reaches. Snow and ice melting directly affect the vegetation growth. While, NDVI can reflect the
growth of vegetation in spring. In this study, the correlation between vegetation NDVI and the amount
of melting water can indirectly verify the effect of the model modification and the accuracy of the
calculation from an ecological perspective. The vegetation variation in the study area as reflected by
the NDVI can be used to evaluate the modification effect of the model. In this study, MODIS Surface
Reflectance MOD09Q1 data from 2000 to 2015 were used to calculate the NDVI. The meteorological
data used in the model were derived from ERA-Interim meteorological data. The relationships between
the NDVIs of different months in spring were shown in Figure 6, and the amount of melt water were
compared on the daily time scale. A comparison of the NDVIs of the spring months in the study
area with the river recharge area reveals that while the vegetation began turning green in March,
the maximum NDVI value in the area did not exceed 0.71, and the vegetation area was primarily
concentrated in the recharge area of the lower reaches of the river. In April, the maximum NDVI value
was 0.92, and the vegetation area had further expanded. In May, the maximum NDVI value was 0.99,
and the vegetation area had continued to expand, with the vegetation area in the upstream region of
the study area increasing significantly.
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Figure 6. Springtime NDVI distribution in the research area.

The response of the relationship between the NDVI and the amount of snow and ice melt calculated
by the models was analyzed. Three types of land use were selected: herbaceous green space, dry
land, and paddy fields. As shown in Figure 7a, there were a large number of 0 values for snow and
ice melt calculated by the SWAT model in spring, which was inconsistent with the actual situation.
The correlation coefficient calculated between snow and ice melt with the NDVI was only 0.58. In
Figure 7b, there were no 0 values for snow and ice melt calculated by the SWATAI model, and the
correlation coefficient increased to 0.76. For the paddy fields, the correlation coefficient between the
NDVI and snow and ice melt was 0.65 for original SWAT model, and after the ice-melt module was
added, the correlation coefficient increased to 0.77 (Figure 8). As shown in Figure 9, the correlation
coefficient between the snow and ice melt calculated by the model and the dry land NDVI increased
from 0.67 to 0.80 after model modification.
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Figure 7. Relationship between the herbaceous green space NDVI and snow and ice melt: (a) relationship
between the amount of snow and ice melt calculated by the SWAT model and the herbaceous green
space NDVI; (b) relationship between the amount of snow and ice melt calculated by the SWATAI
model and the herbaceous green space NDVI.
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between the amount of snow and ice melt calculated by the SWAT model and the paddy field NDVI;
(b) relationship between the amount of snow and ice melt calculated by the SWATAI model and paddy
field NDVI.
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4. Discussion

4.1. Model Modification

Snow and ice are not clearly distinguished in the SWAT model [57]. Thus, this method is obviously
not applicable in alpine mountainous areas, and its calculation of ice and snow melt deviates from
observation. In this study, the SWATAI model was based on the original SWAT model, with the addition
of a new ice-melt module, which was developed to overcome the deficiency of the model’s ice-melt
calculation. A newly-added ice-melt module refers to the calculation method of snow and the enhanced
relevant parameters of ice-melt. Temperature, as an important parameter in model calculation, is also
an important factor affecting the process of ice and snow melt [42,58]. Temperature is mainly reflected
in the determination of precipitation type and the important conditions affecting the determination as
to whether ice or snow melting occurs [51,58,59]. Therefore, the SWATAI model mainly considered the
modification of the model in terms of temperature and the accurate differentiation and calculation of
snow and ice in the model. Snow and ice were distinguished by adding an elevation threshold. When
the elevation was less than the elevation threshold, the precipitation was mainly considered to be snow;
otherwise, it was ice. In addition, as an important temperature discrimination condition, the average
daily temperature was utilized in the traditional degree day factor method but was not applicable in
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the high and cold mountainous areas. Therefore, the maximum temperature and the accumulated
temperature were added as the temperature determination conditions in the new ice-melt module.

The daily temperature integral method was applied for the calculation of accumulated temperature.
In order to improve the recognition accuracy of the precipitation types and to avoid the occurrence
of accidental events, the maximum daily temperature threshold was also increased. As a result, the
model with the ice-melt module has higher accuracy and applicability in the simulation of snow melt
and ice melt floods in mountainous regions, at both the daily and hourly time scales. The SWATAI
model can choose different simulation scales according to different research purposes. In the context of
future climate change, the annual scale can be used to analyze the relationship between snow, glacier
area, and runoff. In the research of flood disaster, hourly scale is a better choice. The daily scale and
monthly scale can be used in the research of water resources management. research on water resources
management can use daily and monthly scales. The daily scale and weekly scale can be used in the
water resources management for reservoirs and agricultural water.

4.2. Model Performance Comparison

Figures 3–5 illustrate the comparison between the simulated discharges and observations on the
daily and hourly time scales, respectively, and were created to more intuitively analyze the modification
effect of the SWATAI model. Prior to April, there was little difference between simulated runoff and
observations. This was mainly due to low temperatures from January through March, resulting in no
melting of the upstream snow and glaciers [60,61]. In April, temperature began to rise, and the snow
and ice at lower altitudes began to melt. There was a flood event in May, to which the original SWAT
model did not respond, while the SWATAI model simulated it well. This difference between the model
simulations was due to the fact that the surface accumulated temperature, which is utilized in the
SWATAI model, is more sensitive than the air temperature, especially in areas without vegetation cover
at high altitudes. This modification avoids neglecting events for which the daily average temperature
does not reach the temperature threshold in the original model, although ice-melt events still do occur
in this model [22]. In June, river runoff increases significantly, mainly due to rapid temperature rise
and the associated acceleration of snow and ice melt. In general, flooding processes in summer were
overestimated by the original SWAT model. In addition, multiple flood processes were combined
and presented as one flooding process. This was mainly due to the fact that the original model only
uses the daily average temperature to determine the conditions of ice-melt, thus neglecting the large
diurnal temperature range in the mountains. At night, temperatures in the mountains decrease rapidly,
and the ice-melting process stops [22]. These details cannot be taken into account using the daily
average temperature alone. However, when the accumulated temperature determination conditions
were added, the diurnal temperature range was fully considered [62]. Therefore, each flood process
could be well simulated, and overestimation by the model calculations could be avoided to a certain
extent, thereby solving the inability to distinguish individual flood processes [63]. In September,
temperatures in the mountains drop sharply, and the melting process of snow and ice gradually
weakens and disappears [10]. The simulation discharges of the original SWAT model were obviously
larger than the observations, mainly due to the lack of a method for distinguishing snow and ice and
calculating them separately. Once the snow at low elevations has disappeared, ice still remains at
higher elevations. If the ice-melt is still calculated according to the threshold and conditions set by the
snow-melt, it will definitely be overestimated, since the temperatures at this time may not reach the
temperature threshold of ice-melt [64].

In order to better analyze and study the mountain flooding process and to verify the simulation
accuracy of the new model, it was necessary to examine the flood process on the hourly scale [50,59].
10 flood events during the 2-year study period were selected for statistical analysis, the maximum time
deviation of the simulation results of the original SWAT model was 8 h, which obscures the significance
of studying flood processes at high time resolution. In the simulation results of the SWATAI model,
the time deviation was less than 2 h, and the accuracy was greatly improved. One of the implications
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of the model modification was that it can perfectly represent the entire process of flood expansion and
regression. Based on the simulation results of the original SWAT model, the complete process could not
be well represented, and the peak value deviation was as much as 96.05 m3

·s−1. This was mainly due to
the calculation of melting ice and snow as a single process [4]. The peak flood values simulated by the
models of all 25 flood events during the calibration and validation periods were statistically analyzed
and compared to the measured data (Figure 10). The scatter plot clearly indicates that the simulated
results of the model with the added ice-melt module were closer to the measured values over the two
periods. In order to compare the correlation between the simulated and measured flood peaks before
and after the model modification, R-squared values were calculated for the 25 flood peaks during the
calibration and validation periods. By calculation, the R-squared value between the simulated peaks
of the original model and the measured peaks was 0.85 during the calibration period, and that was
0.9 in the modified results. During the verification period, the correlation between the peak value of
the original model and the measured data was 0.83, which increased to 0.89 by modifying the model.
Through the modification, whether in the calibration period or validation period, the simulated value
of the modified model has a higher correlation with the observed data than the simulated values.
This was mainly because through the modification of the model, the simulation of the flood peaks
was closer to the measured data, which improved the phenomenon that the original model generally
underestimated the flood peaks. These results also confirm the rationality and importance of the
addition of the ice-melt module and provide a better exploration of flooding process simulation.
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4.3. Analysis of Parameter Sensitivity and Uncertainty

The analysis of sensitivity and uncertainty provides indispensable and important information in
model-related research [52]. During the model calibration process, the sensitivity of each parameter is
analyzed via continuous calibration and screening in order to determine the optimal combination of
parameters [57]. The results of the parameter sensitivity analysis in this study are listed in Table 4. The
effective hydraulic conductivity in the alluvium of the main channel (CH_K2) was the most sensitive
of all the parameters, followed by precipitation lapse rate (PLAPS) and ice-melt base accumulated
temperature (IMTP_A). Snow-melt base temperature (SMTMP), temperature lapse rate (TLAPS),
ice-melt base temperature (IMTP), and the elevation threshold between snow and ice (ETSI) also
exhibited high sensitivity. As important parameters of the newly-added ice-melt module, all of these
parameters displayed high sensitivity, thus indicating to a certain extent the rationality of parameter
performance after the addition of the ice-melt module. Due to its complex terrain and large elevation
variation, the Tizinafu River Basin has an extensive area covered by snow and glaciers. During
the process of model calibration, parameters related to snow and ice melt, as well as elevation, are
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highly sensitive, which was indeed verified by the statistical results of the parameter sensitivity
analysis [51,54]. The sensitivity analysis of the parameters makes it possible to better filter the
parameters and to improve the calculation accuracy of the model [52,53]. When analyzing the model
uncertainty, the structure, data, and parameters of the model were regularly evaluated [65], allowing
the simulation results to reach their optimal values for the given conditions, although uncertainty was
inevitable [65]. Indeed, when analyzed the parameter sensitivity of the model, all the parameters used
in the model calibration were counted. While, most parameters related other hydrological processes,
such as evapotranspiration, infiltration, surface roughness, could significantly influence the model
output in very sensitive way. If come to these specified processes, such as snow melting or ice melting,
it has to focus on the newly added module of melting and its parameters in order to describe the
melting process more reasonably. A separate ice melting calculation module and some new parameters
were added, including the elevation threshold of snow and glacier boundary (ETSI), the temperature
threshold of ice melting (IMTP), the accumulated temperature threshold (IMTP_A), the maximum ice
melting factor (IMFMX), and the minimum ice melting factor (IMFMN), the ice melting temperature
delay parameter(ITIMP), as well as the snowfall accumulated temperature threshold (SFTMP_A).
Uncertainty mainly comes from the input data, model structure, and parameter [55,66]. When reducing
the uncertainty of the input data, the model input data was usually compared and screened to remove
outliers [67,68]. The most accurate and suitable data was chosen and verified to a certain extent. When
reducing the uncertainty of the parameters, we usually perform repeated calibration with the help of
the calibration tool (SUFI-2) to ensure the optimal parameter value and parameter combination [69–71].
As for the uncertainty of the model structure, it can only be found in practical applications, and the
model structure is continuously improved. In this study, through the distinction between snow melting
and ice melting calculation, a new ice melting calculation module was added, the structure of the
model was optimized, and the simulation results were more accurate. Compared with the original
model, the uncertainty of the model structure has been improved.

4.4. Relationship Between NDVI and Snow and Ice Melt in Spring

The Tizinafu River flows into Yecheng County through the Jiangka hydrology station and provides
water for agricultural irrigation. In the spring, the snow and ice melt provide sufficient water for
herbaceous vegetation in the mountain areas [72–74]. The downstream region is used for farming in
the spring, and river water is employed for agricultural irrigation. Therefore, in Figure 6, the NDVI in
March was mainly concentrated in the downstream irrigation areas, and the green vegetation was only
found in a few mountainous regions. Natural vegetation was scarce in the downstream region, which
is primarily an irrigation area where certain crops are grown. In April, as the temperature gradually
increased, snow and ice melt accelerated, the regeneration of mountain herbs accelerated, the NDVI
value gradually increased, and the vegetation area continued to expand [64,75,76]. The mountainous
vegetation area and the downstream irrigation zone both expanded through the use of river water [77].
In May, the snow and ice in the mountainous areas continued to melt, vegetation grew rapidly, and
the vegetation area continued to increase. The vegetation in the downstream irrigation areas and
residential areas grew well. The herbaceous green land in the mountainous areas was the vegetation
that began to turn green in early spring, which may well represent the rapid feedback of mountain
vegetation to water supply. Paddy fields and dry land were the two main kinds of local cropland.
During the dry spring, farmers in the Kunlun Mountains region primarily rely on river water for
irrigation. Thus, in the spring, agriculture is carried out using river water sources, and the two land
types may well represent the response of vegetation in downstream areas to the amount of snow and
ice melt. From Figure 6, it can be seen that the NDVI values and vegetation area in March, when there
was less melting water, were significantly smaller than those in April. In May, along with temperature,
water supply also played an important role [78]. This was mainly due to the fact that the original
model only calculated the ice as snow cover. In fact, ice melting lasted longer and the amount of water
stored was larger, leading to a large error in the calculation of the continuity of water melting in the
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original SWAT model, resulting in the absence of meltwater during some periods [78]. The drylands
and paddy fields in the study area were mainly distributed in the lower reaches. In winter, there is lack
of water resources. When the temperature rises in spring, the snow and ice melt quickly recharged
the river, and the runoff increased continuously. The farmlands mainly depend irrigation water due
to the sparse rainfall in the downstream area. Winter wheat and walnut were the main crop types
in dryland, and rice was the major crop in paddy field [79,80]. In spring, when winter wheat was
irrigated with river water, the wheat will turn green rapidly. Hereby, NDVI value in dryland has a
strong sensitivity to the stream flow, or in other words, melting water. The reforestation of walnuts and
other crops was also concentrated in April. While the growing season of rice in paddy field begins in
late May with huge water demand. Therefore, NDVI of dryland field vegetation was highly correlated
with the amount of melting water. The NDVI and melting water from March to May in spring were
used for correlation analysis. During this period, the growth of rice was very slow, and the effect of
water storage in paddy field has a certain delay on the response of melting water, which resulted in the
correlation between NDVI and melting water in paddy field was slightly lower than that in dry land.
As a result of the modification, the correlation between the amount of snow and ice melt calculated by
the model and the NDVI has been greatly improved.

5. Conclusions

A SWATAI model with the independent ice-melt module was developed based on the original
SWAT model in which referenced the degree day factor method and also utilized new temperature
determination conditions. The daily scale accuracy of the new SWATAI model was much higher than
that of the original SWAT model. In particular, during the high incidence of ice melt floods in summer,
multiple flood processes were considered to be a single event by the original SWAT model—thus
effectively ignoring the growth and regression of individual processes—were well simulated by the
SWATAI model. In the comparison of the simulation results, the SWATAI model increased the R2

factor by 7.7% compared to the original SWAT model, the NSE value increased by 6.1%, and the PBIAS
increased by 29.3%. In addition, the contribution rate of snow and ice melt in the river discharge
increased by 18.73%. A comparison of the peak value and temporal deviations of all flood events
during the flood season revealed that the accuracy of the SWATAI model in terms of peak deviation
was improved by 77.65%, while the time deviation accuracy was improved by 82.93%.

The meltwater volume was calculated using the long-term sequence of meteorological data such
as precipitation and temperature and compared to NDVI data in order to verify the accuracy of the
model simulation results. It was determined that the R2 value between the NDVI and the amount of
meltwater increased from 0.58 to 0.76 in herbaceous green spaces, from 0.65 to 0.77 in paddy fields,
and from 0.67 to 0.80 for dry land.

This study provided a new method for simulating the multiple flood processes with high temporal
resolution in alpine mountainous areas and presented a new benchmark for the flood generation
mechanism as well as early warning and prediction research in mountainous areas. These tools and
results can provide technical support and serve as an analysis reference for flood disaster prevention
and economic benefit assessment.
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