Greenland Ice Sheet Surface Runoff Projections to 2200 Using Degree-Day Methods
Abstract
:1. Introduction
2. Methods
2.1. Climate Forcing to 2200
2.1.1. Prior to 2100
2.1.2. Post-2100
2.2. Surface Energy and Mass Balance Model SEMIC
2.3. Degree-Day (DD) Models
2.3.1. Method 1
2.3.2. Method 2
2.3.3. Tuning Degree-Day Factors
2.4. Equilibrium Line Altitude (ELA) Parameterization
3. Validation of Tuned DD Methods and Runoff Projections by 2100
4. Results
4.1. Runoff-Elevation Feedback and Ice Area Evolution
4.2. Runoff Projections to 2200
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lenton, T.M.; Held, H.; Kriegler, E.; Hall, J.W.; Lucht, W.; Rahmstorf, S.; Schellnhuber, H.J. Tipping elements in the Earth’s climate system. Proc. Natl. Acad. Sci. USA 2008, 105, 1786–1793. [Google Scholar] [CrossRef] [Green Version]
- Van den Broeke, M.R.; Enderlin, E.M.; Howat, I.M.; Kuipers Munneke, P.; Noël, B.P.Y.; Jan Van De Berg, W.; Van Meijgaard, E.; Wouters, B. On the recent contribution of the Greenland ice sheet to sea level change. Cryosphere 2016, 10, 1933–1946. [Google Scholar] [CrossRef] [Green Version]
- Csatho, B.M.; Schenk, A.F.; van der Veen, C.J.; Babonis, G.; Duncan, K.; Rezvanbehbahani, S.; Van Den Broeke, M.R.; Simonsen, S.B.; Nagarajan, S.; van Angelen, J.H. Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics. Proc. Natl. Acad. Sci. USA 2014, 111, 18478–18483. [Google Scholar] [CrossRef] [Green Version]
- Enderlin, E.M.; Howat, I.M.; Jeong, S.; Noh, M.; van Angelen, J.H.; van den Broeke, M.R. An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett. 2014, 41, 866–872. [Google Scholar] [CrossRef] [Green Version]
- Church, J.A.; White, N.J. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 2011, 32, 585–602. [Google Scholar] [CrossRef] [Green Version]
- Fürst, J.J.; Goelzer, H.; Huybrechts, P. Ice-dynamic projections of the Greenland ice sheet in response to atmospheric and oceanic warming. Cryosphere 2015, 9, 1039–1062. [Google Scholar] [CrossRef] [Green Version]
- Wilton, D.J.; Jowett, A.; Hanna, E.; Bigg, G.R.; Van Den Broeke, M.R.; Fettweis, X.; Huybrechts, P. High resolution (1 km) positive degree-day modelling of Greenland ice sheet surface mass balance, 1870–2012 using reanalysis data. J. Glaciol. 2017, 63, 176–193. [Google Scholar] [CrossRef] [Green Version]
- Kraaijenbrink, P.D.A.; Bierkens, M.F.P.; Lutz, A.F.; Immerzeel, W.W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 2017, 549, 257–260. [Google Scholar] [CrossRef]
- Zhao, L.; Tian, L.; Zwinger, T.; Ding, R.; Zong, J.; Ye, Q.; Moore, J.C. Numerical simulations of Gurenhekou glacier on the Tibetan Plateau. J. Glaciol. 2014, 60, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, S.; Ding, Y. Observed degree-day factors and their spatial variation on glaciers in western China. Ann. Glaciol. 2006, 43, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Hanna, E.; Huybrechts, P.; Cappelen, J.; Steffen, K.; Bales, R.C.; Burgess, E.; McConnell, J.R.; Steffensen, J.P.; Van Den Broeke, M.; Wake, L.; et al. Greenland Ice Sheet surface mass balance 1870 to 2010 based on Twentieth Century Reanalysis, and links with global climate forcing. J. Geophys. Res. Atmos. 2011, 116, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Box, J.E.; Cressie, N.; Bromwich, D.H.; Jung, J.H.; Van Den Broeke, M.; Van Angelen, J.H.; Forster, R.R.; Miège, C.; Mosley-Thompson, E.; Vinther, B.; et al. Greenland ice sheet mass balance reconstruction. Part I: Net snow accumulation (1600–2009). J. Clim. 2013, 26, 3919–3934. [Google Scholar] [CrossRef] [Green Version]
- Braithwaite, R.J. Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling. J. Glaciol. 1995, 41, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Vincent, C.; Six, D. Relative contribution of solar radiation and temperature in enhanced temperature-index melt models from a case study at Glacier de Saint-Sorlin, France. Ann. Glaciol. 2013, 54, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Gabbi, J.; Carenzo, M.; Pellicciotti, F.; Bauder, A.; Funk, M. A comparison of empirical and physically based glacier surface melt models for long-term simulations of glacier response. J. Glaciol. 2014, 60, 1140–1154. [Google Scholar] [CrossRef] [Green Version]
- Krapp, M.; Robinson, A.; Ganopolski, A. SEMIC: An efficient surface energy and mass balance model applied to the Greenland ice sheet. Cryosphere 2017, 11, 1519–1535. [Google Scholar] [CrossRef] [Green Version]
- Noël, B.; Van De Berg, W.J.; Van Meijgaard, E.; Kuipers Munneke, P.; Van De Wal, R.S.W.; Van Den Broeke, M.R. Evaluation of the updated regional climate model RACMO2. 3: Summer snowfall impact on the Greenland Ice Sheet. Cryosphere 2015, 9, 1831–1844. [Google Scholar] [CrossRef] [Green Version]
- Fettweis, X.; Franco, B.; Tedesco, M.; Van Angelen, J.H.; Lenaerts, J.T.M.; van den Broeke, M.R.; Gallée, H. Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere 2013, 7, 469–489. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.C.; Yue, C.; Zhao, L.; Guo, X.; Watanabe, S.; Ji, D. Greenland ice sheet response to stratospheric aerosol injection geoengineering. Earth’s Future 2019, 7, 1451–1463. [Google Scholar] [CrossRef]
- Simmons, A. ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsl. 2006, 110, 25–36. [Google Scholar]
- Plach, A.; Nisancioglu, K.H.; Le Clec’h, S.; Born, A.; Langebroek, P.M.; Guo, C.; Imhof, M.; Stocker, T.F. Eemian Greenland SMB strongly sensitive to model choice. Clim. Past 2018, 14, 1463–1485. [Google Scholar] [CrossRef] [Green Version]
- Peano, D.; Colleoni, F.; Quiquet, A.; Masina, S. Ice flux evolution in fast flowing areas of the Greenland ice sheet over the 20th and 21st centuries. J. Glaciol. 2017, 63, 499–513. [Google Scholar] [CrossRef] [Green Version]
- Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 2003, 282, 104–115. [Google Scholar] [CrossRef]
- Van Den Broeke, M.; Bus, C.; Ettema, J.; Smeets, P. Temperature thresholds for degree-day modelling of Greenland ice sheet melt rates. Geophys. Res. Lett. 2010, 37, L18501. [Google Scholar] [CrossRef] [Green Version]
- Aschwanden, A.; Fahnestock, M.A.; Truffer, M.; Brinkerhoff, D.J.; Hock, R.; Khroulev, C.; Mottram, R.; Abbas Khan, S. Contribution of the Greenland Ice Sheet to sea level over the next millennium. Sci. Adv. 2019, 5, eaav9396. [Google Scholar] [CrossRef] [Green Version]
- Van Breedam, J.; Goelzer, H.; Huybrechts, P. Semi-equilibrated global sea-level change projections for the next 10,000 years. Earth Syst. Dyn. Discuss. 2020, 11, 953–976. [Google Scholar] [CrossRef]
- Clark, P.U.; Shakun, J.D.; Marcott, S.A.; Mix, A.C.; Eby, M.; Kulp, S.; Levermann, A.; Milne, G.A.; Pfister, P.L.; Santer, B.D.; et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Chang. 2016, 6, 360–369. [Google Scholar] [CrossRef]
- Huybrechts, P.; de Wolde, J. The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J. Clim. 1999, 12, 2169–2188. [Google Scholar] [CrossRef] [Green Version]
- Driesschaert, E.; Fichefet, T.; Goosse, H.; Huybrechts, P.; Janssens, I.; Mouchet, A.; Munhoven, G.; Brovkin, V.; Weber, S.L. Modeling the influence of Greenland ice sheet melting on the Atlantic meridional overturning circulation during the next millennia. Geophys. Res. Lett. 2007, 34, L10707. [Google Scholar] [CrossRef] [Green Version]
- Mengel, M.; Nauels, A.; Rogelj, J.; Schleussner, C.-F. Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action. Nat. Commun. 2018, 9, 601. [Google Scholar] [CrossRef] [Green Version]
- Lowe, J.A.; Gregory, J.M.; Ridley, J.; Huybrechts, P.; Nicholls, R.J.; Collins, M. The role of sea-level rise and the Greenland ice sheet in dangerous climate change: Implications for the stabilisation of climate. Avoid. Danger. Clim. Chang. 2006, 29, 36. [Google Scholar]
- Golledge, N.R.; Keller, E.D.; Gomez, N.; Naughten, K.A.; Bernales, J.; Trusel, L.D.; Edwards, T.L. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 2019, 566, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Clarke, L.; Edmonds, J.; Jacoby, H.; Pitcher, H.; Reilly, J.; Richels, R. Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations; Department of Energy, Office of Biological & Environment Research: Washington, DC, USA, 2007; p. 154. [Google Scholar]
- Smith, S.J.; Wigley, T.M.L. Multi-gas forcing stabilization with Minicam. Energy J. 2006, 27, 373–392. [Google Scholar] [CrossRef]
- Wise, M.; Calvin, K.; Thomson, A.; Clarke, L.; Bond-Lamberty, B.; Sands, R.; Smith, S.J.; Janetos, A.; Edmonds, J. Implications of limiting CO2 concentrations for land use and energy. Science 2009, 324, 1183–1186. [Google Scholar] [CrossRef]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33. [Google Scholar] [CrossRef] [Green Version]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E. RCP 4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109, 77. [Google Scholar] [CrossRef] [Green Version]
- Kitous, A.; Keramidas, K. Analysis of Scenarios Integrating the INDCs; European Comission: Brussels, Belgium, 2015. [Google Scholar]
- Ji, D.; Wang, L.; Feng, J.; Wu, Q.; Cheng, H.; Zhang, Q.; Yang, J.; Dong, W.; Dai, Y.; Gong, D. Description and basic evaluation of Beijing Normal University Earth system model (BNU-ESM) version 1. Geosci. Model Dev. 2014, 7, 2039–2064. [Google Scholar] [CrossRef] [Green Version]
- Arora, V.K.; Scinocca, J.F.; Boer, G.J.; Christian, J.R.; Denman, K.L.; Flato, G.M.; Kharin, V.V.; Lee, W.G.; Merryfield, W.J. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett. 2011, 38, L05805. [Google Scholar] [CrossRef]
- Collins, W.J.; Bellouin, N.; Doutriaux-Boucher, M.; Gedney, N.; Halloran, P.; Hinton, T.; Hughes, J.; Jones, C.D.; Joshi, M.; Liddicoat, S. Development and evaluation of an Earth-System model–HadGEM2. Geosci. Model Dev. 2011, 4, 1051–1075. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, S.; Hajima, T.; Sudo, K.; Nagashima, T.; Takemura, T.; Okajima, H.; Nozawa, T.; Kawase, H.; Abe, M.; Yokohata, T. MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 2011, 4, 845–872. [Google Scholar] [CrossRef] [Green Version]
- Steffen, K.; Box, J. Surface climatology of the Greenland ice sheet: Greenland Climate Network 1995–1999. J. Geophys. Res. Atmos. 2001, 106, 33951–33964. [Google Scholar] [CrossRef]
- Hempel, S.; Frieler, K.; Warszawski, L.; Schewe, J.; Piontek, F. A trend-preserving bias correction–the ISI-MIP approach. Earth Syst. Dyn. 2013, 4, 219–236. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Velicogna, I.; van den Broeke, M.R.; Monaghan, A.; Lenaerts, J.T.M. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 2011, 38, L05503. [Google Scholar] [CrossRef] [Green Version]
- Rückamp, M.; Falk, U.; Frieler, K.; Lange, S.; Humbert, A. The effect of overshooting 1.5 °C global warming on the mass loss of the Greenland ice sheet. Earth Syst. Dyn. 2018, 9, 1169–1189. [Google Scholar] [CrossRef] [Green Version]
- Yue, C.; Schmidt, L.S.; Zhao, L.; Wolovick, M.; Moore, J.C. Vatnajökull mass loss under solar geoengineering due to the North Atlantic meridional overturning circulation. Earth’s Future 2021, 9, e2021EF002052. [Google Scholar] [CrossRef]
- Rignot, E.J.; Gogineni, S.P.; Krabill, W.B.; Ekholm, S. North and northeast Greenland ice discharge from satellite radar interferometry. Science 1997, 276, 934–937. [Google Scholar] [CrossRef] [Green Version]
- Reeh, N.; Mayer, C.; Miller, H.; Thomsen, H.H.; Weidick, A. Present and past climate control on fjord glaciations in Greenland: Implications for IRD-deposition in the sea. Geophys. Res. Lett. 1999, 26, 1039–1042. [Google Scholar] [CrossRef]
- Janssens, I.; Huybrechts, P. The treatment of meltwater retention in mass-balance parameterization of the Greenland ice sheet. Ann. Glaciol. 2000, 31, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Haeberli, W. Fluctuations of Glaciers, 1975–1980 (Vol. IV); International Commission on Snow and Ice of the International Association of Hydrological Sciences and UNESCO; Associa-tion of Hydrological Sciences: Paris, France, 1985; ISBN 9231023675. [Google Scholar]
- Weidick, A.; Boggild, C.E.; Knudsen, N.T. Glacier inventory and atlas of West Greenland. Rapp. Grønlands Geol. Undersøgelse 1992, 158, 1–194. [Google Scholar] [CrossRef]
- Rignot, E.; Kanagaratnam, P. Changes in the velocity structure of the Greenland Ice Sheet. Science 2006, 311, 986–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vizcaino, M.; Mikolajewicz, U.; Ziemen, F.; Rodehacke, C.B.; Greve, R.; Van Den Broeke, M.R. Coupled simulations of Greenland Ice Sheet and climate change up to AD 2300. Geophys. Res. Lett. 2015, 42, 3927–3935. [Google Scholar] [CrossRef] [Green Version]
- Morlighem, M.; Williams, C.N.; Rignot, E.; An, L.; Arndt, J.E.; Bamber, J.L.; Catania, G.; Chauché, N.; Dowdeswell, J.A.; Dorschel, B. BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys. Res. Lett. 2017, 44, 11–51. [Google Scholar] [CrossRef] [Green Version]
- Winkelmann, R.; Levermann, A.; Martin, M.A.; Frieler, K. Increased future ice discharge from Antarctica owing to higher snowfall. Nature 2012, 492, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Gregory, J.; George, S.; Smith, R. Large and irreversible future decline of the Greenland ice-sheet. Cryosphere 2020, 14, 4299–4322. [Google Scholar] [CrossRef]
- Nowicki, S.; Goelzer, H.; Seroussi, H.; Payne, A.J.; Lipscomb, W.H.; Abe-Ouchi, A.; Agosta, C.; Alexander, P.; Asay-Davis, X.S.; Barthel, A. Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models. Cryosphere 2020, 14, 2331–2368. [Google Scholar] [CrossRef]
- Lyon, C.; Saupe, E.E.; Smith, C.J.; Hill, D.J.; Beckerman, A.P.; Stringer, L.C.; Marchant, R.; McKay, J.; Burke, A.; O’Higgins, P. Climate change research and action must look beyond 2100. Glob. Chang. Biol. 2021, 1–13. [Google Scholar] [CrossRef]
- Goelzer, H.; Nowicki, S.; Payne, A.; Larour, E.; Seroussi, H.; Lipscomb, W.; Gregory, J.; Abe-Ouchi, A.; Shepherd, A.; Simon, E.; et al. The future sea-level contribution of the Greenland ice sheet: A multi-model ensemble study of ISMIP6. Cryosphere 2020, 14, 3071–3096. [Google Scholar] [CrossRef]
- Jevrejeva, S.; Moore, J.C.; Grinsted, A. Sea level projections to AD2500 with a new generation of climate change scenarios. Glob. Planet. Chang. 2012, 80–81, 14–20. [Google Scholar] [CrossRef]
- Bamber, J.L.; Oppenheimer, M.; Kopp, R.E.; Aspinall, W.P.; Cooke, R.M. Ice sheet contributions to future sea-level rise from structured expert judgment. Proc. Natl. Acad. Sci. USA 2019, 116, 11195–11200. [Google Scholar] [CrossRef] [Green Version]
- Trusel, L.D.; Das, S.B.; Osman, M.B.; Evans, M.J.; Smith, B.E.; Fettweis, X.; McConnell, J.R.; Noël, B.P.Y.; van den Broeke, M.R. Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature 2018, 564, 104–108. [Google Scholar] [CrossRef]
- Pattyn, F.; Ritz, C.; Hanna, E.; Asay-Davis, X.; DeConto, R.; Durand, G.; Favier, L.; Fettweis, X.; Goelzer, H.; Golledge, N.R. The Greenland and Antarctic ice sheets under 1.5 C global warming. Nat. Clim. Chang. 2018, 8, 1053–1061. [Google Scholar] [CrossRef] [Green Version]
- Calov, R.; Beyer, S.; Greve, R.; Beckmann, J.; Willeit, M.; Kleiner, T.; Rückamp, M.; Humbert, A.; Ganopolski, A. Simulation of the future sea level contribution of Greenland with a new glacial system model. Cryosphere 2018, 12, 3097–3121. [Google Scholar] [CrossRef] [Green Version]
- Robinson, A.; Calov, R.; Ganopolski, A. An efficient regional energy-moisture balance model for simulation of the Greenland Ice Sheet response to climate change. Cryosphere 2010, 4, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Ullman, D.J.; Carlson, A.E.; Anslow, F.S.; LeGrande, A.N.; Licciardi, J.M. Laurentide ice-sheet instability during the last deglaciation. Nat. Geosci. 2015, 8, 534–537. [Google Scholar] [CrossRef]
- Van De Berg, W.J.; Van Den Broeke, M.; Ettema, J.; Van Meijgaard, E.; Kaspar, F. Significant contribution of insolation to Eemian melting of the Greenland ice sheet. Nat. Geosci. 2011, 4, 679–683. [Google Scholar] [CrossRef]
Earth System Model | Resolution | Ensemble | Reference |
---|---|---|---|
BNU-ESM | 2.8° × 2.8° | 1 | [38] |
CanESM2 | 2.8° × 2.8° | 2 | [39] |
HadGEM2-ES | 1.25° × 1.25° | 3 | [40] |
MIROC-ESM | 2.8° × 2.8° | 1 | [41] |
MIROC-ESM-CHEM | 2.8° × 2.8° | 3 | [41] |
Method | DDFsnow | DDFice |
---|---|---|
1 | 1.1 ± 0.6 | 1.7 ± 0.7 |
2 | 2.7 ± 1.5 | 4.5 ± 1.9 |
Runoff Simulations | Resolution | Historical 1980–1999 | RCP4.5 2080–2099 | RCP8.5 2080–2099 |
---|---|---|---|---|
DDMulti-model mean | 0.1° × 0.1° | 266 ± 111 | 587 ± 243 | 886 ± 354 |
SEMIC (Krapp et al. [16]) | 0.1° × 0.1° | 252 ± 60 | 620 ± 117 | 1041 ± 343 |
MAR (Fettweis et al. [18]) | 25 km | 266 ± 66 | ------- | ------- |
ECHAM5/MPI-OM -SICOPOLIS (Vizcaino et al. [54]) | 10 km | 419 ± 50 | 773 ± 69 | 1145 ± 76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, C.; Zhao, L.; Wolovick, M.; Moore, J.C. Greenland Ice Sheet Surface Runoff Projections to 2200 Using Degree-Day Methods. Atmosphere 2021, 12, 1569. https://doi.org/10.3390/atmos12121569
Yue C, Zhao L, Wolovick M, Moore JC. Greenland Ice Sheet Surface Runoff Projections to 2200 Using Degree-Day Methods. Atmosphere. 2021; 12(12):1569. https://doi.org/10.3390/atmos12121569
Chicago/Turabian StyleYue, Chao, Liyun Zhao, Michael Wolovick, and John C. Moore. 2021. "Greenland Ice Sheet Surface Runoff Projections to 2200 Using Degree-Day Methods" Atmosphere 12, no. 12: 1569. https://doi.org/10.3390/atmos12121569
APA StyleYue, C., Zhao, L., Wolovick, M., & Moore, J. C. (2021). Greenland Ice Sheet Surface Runoff Projections to 2200 Using Degree-Day Methods. Atmosphere, 12(12), 1569. https://doi.org/10.3390/atmos12121569