Share of Discontinuities in the Ozone Concentration Data from Three Reanalyses
Abstract
:1. Introduction
2. Data and Method
3. Results
3.1. Comparison of Share of Discontinuities among Tests within the Same Reanalysis
3.2. Comparison of Share of Discontinuities among Reanalyses within the Same Test
3.3. Discontinuities around 2004 and 2015
3.3.1. Comparison of Share of Discontinuities in 2004 among Tests within the Same Reanalysis
3.3.2. Comparison of Discontinuity Occurrence in 2004 among Reanalyses within the Same Test
3.4. Year 2015
3.4.1. Comparison of Share of Discontinuities in 2015 among Tests within the Same Reanalysis
3.4.2. Comparison of Share of Discontinuities in 2015 among Reanalyses within the Same Test
3.5. Share of Discontinuities Explained by Changes in 2004 and 2015
3.5.1. Comparison of Share of Explained Discontinuities (SDE) among Tests within the Same Reanalysis
3.5.2. Comparison of Share of Explained Discontinuities among Reanalyses within the Same Test
4. Discussion
4.1. MERRA-2
4.2. ERA-5
4.3. JRA-55
4.4. Pettitt Test
4.5. Buishand Test
4.6. The Standard Normal Homogeneity Test
5. Conclusions
- Differences among reanalyses are larger than the differences among homogeneity tests within one reanalysis.
- The share of discontinuities oscillates from 30% to 70% and it is the lowest for JRA-55.
- The minority of discontinuities can be explained by the occurrence of discontinuities in 2004 and in 2015.
- The Pettitt and the Buishand test are not able to capture the change in 2015.
- Only the Standard Homogeneity test can catch the 2015 change.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Solomon, S. Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys. 1999, 37, 275–316. [Google Scholar] [CrossRef]
- World Meteorological Organization. Monitoring Project Report; World Meteorological Organization: Geneva, Switzerland, 2014; p. 416. [Google Scholar]
- Harris, N.R.P.; Hassler, B.; Tummon, F.; Bodeker, G.E.; Hubert, D.; Petropavlovskikh, I.; Steinbrecht, W.; Anderson, J.; Bhartia, P.K.; Boone, C.D.; et al. Past changes in the vertical distribution of ozone—Part 3: Analysis and interpretation of trends. Atmos. Chem. Phys. 2015, 15, 9965–9982. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Cionni, I.; Bodeker, G.E.; Charlton-Perez, A.J.; Kinnison, D.E.; Scinocca, J.F.; Waugh, D.W.; Akiyoshi, H.; Bekki, S.; Chipperfield, M.P.; et al. Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models. Atmos. Chem. Phys. 2010, 10, 9451–9472. [Google Scholar] [CrossRef] [Green Version]
- Waugh, D.W.; Oman, L.; Kawa, S.R.; Stolarski, R.S.; Pawson, S.; Douglass, A.R.; Newman, P.A.; Nielsen, J.E. Impacts of climate change on stratospheric ozone recovery. Geophys. Res. Lett. 2009, 36, L03805. [Google Scholar] [CrossRef] [Green Version]
- McLandress, C.H.; Sheepherd, T.G. Simulated anthropogenic changes in the brewer-dobson circulation, including its extension to high latitudes. J. Clim. 2009, 22, 1516–1540. [Google Scholar] [CrossRef]
- Krzyscin, J.W.; Borkowski, J.L. Variabilty of the total ozone trend over Europe for the period 1950–2004 derived from reconstructed data. Atmos. Chem. Phys. 2008, 8, 2847–2857. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.; Urban, J.; Murtagh, D.P.; Eriksson, P.; Brohede, S.; Haley, C.; Degenstein, D.; Bourassa, A.; von Savigny, C.; Sonkaew, T.; et al. Evolution of stratospheric ozone and water vapour time series studied with satellite measurements. Atmos. Chem. Phys. 2009, 9, 6055–6075. [Google Scholar] [CrossRef] [Green Version]
- Ball, W.T.; Alsing, J.; Staehelin, J.; Davis, S.M.; Froidevaux, L.; Peter, T. Stratospheric ozone trends for 1985–2018: Sensitivity to recent large variability. Atmos. Chem. Phys. 2019, 19, 12731–12748. [Google Scholar] [CrossRef] [Green Version]
- Bourassa, A.E.; Degenstein, D.A.; Randel, W.J.; Zawodny, J.M.; Kyrölä, E.; McLinden, C.A.; Sioris, C.E.; Roth, C.Z. Trends in stratospheric ozone derived from merged SAGE II and Odin-OSIRIS satellite observations. Atmos. Chem. Phys. 2014, 14, 6983–6994. [Google Scholar] [CrossRef] [Green Version]
- Tummon, F.; Hassler, B.; Harris, N.R.P.; Staehelin, J.; Steinbrecht, W.; Anderson, J.; Bodeker, J.E.; Bourassa, A.; Davis, S.M.; Degenstein, D.; et al. Intercomparison of vertically resolved merged satellite ozone data sets: Interannual variability and long-term trends. Atmos. Chem. Phys. 2014, 14, 25687–25745. [Google Scholar] [CrossRef] [Green Version]
- Stratosphere-Troposphere Processes and their Role in Climate (SPARC). SPARC Report N°9 (2019) of The SPARC LOTUS Activity: SPARC/IO3C/GAW Report on Long-term Ozone Trends and Uncertainties in the Stratosphere; Petropavlovskikh, I., Godin-Beekmann, S., Hubert, D., Damadeo, R., Hassler, B., Sofieva, V., Eds.; SPARC Office: Oberpfaffenhofen, Germany, 2019. [Google Scholar] [CrossRef]
- Bengtsson, L.; Hagemann, S.; Hodges, K.I. Can climate trends be calculated from reanalysis data? J. Geophys. Res. Atmos. 2004, 109, D11111. [Google Scholar] [CrossRef] [Green Version]
- Shangguan, M.; Wang, W.; Jin, S. Variability of temperature and ozone in the upper troposphere and lower stratosphere from multi-satellite observations and reanalysis data. Atmos. Chem. Phys. 2019, 19, 6659–6679. [Google Scholar] [CrossRef] [Green Version]
- Križan, P.; Kozubek, M.; Laštovička, J. Discontinuities in the ozone concentration time series from MERRA-2 reanalysis. Atmosphere 2019, 10, 812. [Google Scholar] [CrossRef] [Green Version]
- Pettitt, A.N. A non-parametric approach to the change point detection. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Buishand, T.A. Some Methods for Testing the Homogeneity of Rainfall Records. J. Hydrol. 1982, 58, 11–27. [Google Scholar] [CrossRef]
- Alexandersson, H. A homogeneity test applied to precipitation data. J. Climatol. 1986, 6, 661–675. [Google Scholar] [CrossRef]
- Takacs, L.L.; Suárez, M.J.; Todling, R. Maintaining atmospheric mass and water balance in reanalyses. Q. J. R. Meteorol. Soc. 2016, 142, 1565–1573. [Google Scholar] [CrossRef] [Green Version]
- Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J. Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA-2. Geosci. Model Dev. 2015, 8, 1339–1356. [Google Scholar] [CrossRef] [Green Version]
- Coy, L.; Wargan, K.; Molod, A.M.; McCarty, W.R.; Pawson, S. Structure and dynamics of the quasi-biennial oscillation in MERRA-2. J. Clim. 2016, 29, 5339–5354. [Google Scholar] [CrossRef]
- Randles, C.A.; da Silva, A.M.; Buchard, V.; Darmenov, A.; Colarco, P.R.; Aquila, V.; Bian, H.; Nowottnick, E.P.; Pan, X.; Smirnov, A.; et al. The MERRA-2 Aerosol Assimilation, NASA Technical Report Series on Global Modeling and Data Assimilation; NASA/TM-2016-104606; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2016; Volume 45.
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55Reanalysis: General Specifications and Basic Characteristics. J. Meteor. Soc. Jpn. 2015, 93, 5–48. [Google Scholar] [CrossRef] [Green Version]
- Shibata, K.; Deushi, M.; Sekiyama, T.T.; Yoshimura, H. Development of an MRI chemical transport model for the study of stratospheric chemistry. Pap. Geophys. Meteor. 2005, 55, 75–119. [Google Scholar] [CrossRef] [Green Version]
- Harada, Y.; Kamahori, H.; Kobayashi, C.; Endo, H.; Kobayashi, S.; Ota, Y.; Onoda, H.; Onogi, K.; Miyaoka, K.; Takahashi, K. The JRA-55 Reanalysis: Representation of atmospheric circulation and climate variability. J. Meteor. Soc. Jpn. 2016, 94, 269–302. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, M.; Wright, J.S.; Manney, G.L.; Gray, L.J.; Anstey, J.; Birner, T.; Davis, S.; Gerber, E.P.; Harvey, V.L.; Hegglin, M.I.; et al. Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys. 2017, 17, 1417–1452. [Google Scholar] [CrossRef] [Green Version]
- Gelaro, R.W.; McCarty, M.J.; Suárez, R.; Todling, A.; Molod, L.; Takacs, C.A.; Randles, A.; Darmenov, M.G.; Bosilovich, R.; Reichle, K.; et al. The modern-era retrospective analysis for research and applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Kozubek, M.; Krizan, P.; Lastovicka, J. Northern Hemisphere stratospheric winds in higher midlatitudes: Longitudinal distribution and long-term trends. Atmos. Chem. Phys. 2015, 15, 2203–2213. [Google Scholar] [CrossRef] [Green Version]
- Javari, M. Trend and homogeneity analysis of precipitation in Iran. Climate 2016, 4, 44. [Google Scholar] [CrossRef]
- Firat, M.; Dikbas, F.; Cem Koç, A.; Gungor, M. Missing data analysis and homogeneity test for Turkish precipitation series. Sadhana 2010, 35, 707–720. [Google Scholar] [CrossRef]
- Wijngaard, J.B.; Kleink Tank, A.M.G.; Konnen, G.P. Homogeneity of 20th century European daily temperature and precipitation series. Int. J. Climatol. 2003, 23, 679–692. [Google Scholar] [CrossRef]
- Kozubek, M.; Krizan, P.; Lastovicka, J. Homogeneity of the temperature data series fromERA-5 and MERRA-2 and temperature trends. Atmosphere 2020, 11, 235. [Google Scholar] [CrossRef] [Green Version]
hPa | 0.1 | 0.3 | 0.4 | 0.5 | 0.7 | 1 | 2 | 3 | 4 | 5 | 7 | 10 | 20 | 30 | 40 | 50 | 70 | 100 | 125 | 150 | 175 | 200 | 225 | 250 | 300 | 350 | 400 | 450 | 500 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MERRA-2 | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | |||
ERA-5 | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | |||||||
JRA-55 | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * |
MERRA-2 | Pettitt | Buishand | Standard |
---|---|---|---|
minimum | 35.4 | 36.9 | 41.9 |
average | 52.6 | 54.6 | 60.0 |
maximum | 66.4 | 69.7 | 72.6 |
MERRA-2 | Pettitt | Buishand | SNTH |
---|---|---|---|
minimum | 3.8/1.2/0.2 | 1.7/1.9/0.4 | 0.6/1.7/0.4 |
average | 17.3/32.7/2.5 | 15.9/34.0/3.4 | 12.1/29.7/4.1 |
maximum | 53.9/59.1/7.5 | 56.0/61.4/9.5 | 48.4/56.4/11.3 |
MERRA-2 | Pettitt | Buishand | SNTH |
---|---|---|---|
minimum | 0/0/0 | 0/0/0 | 0.2/0.1/0.0 |
average | 0/0/0 | /0.0/0 | 4.6/4.1/0.7 |
maximum | 0/0/0 | 0.3/0.1/0 | 12.4/13.0/3.1 |
MERRA-2 | Pettitt | Buishand | Standard |
---|---|---|---|
minimum | 1.2 | 1.9 | 1.7 |
average | 32.7 | 34.0 | 29.8 |
maximum | 59.1 | 61.4 | 56.4 |
MERRA-2 | Pettitt | Buishand | Standard |
---|---|---|---|
minimum | 0 | 0 | 0.1 |
average | 0 | 0.0 | 4.1 |
maximum | 0 | 0.1 | 13.0 |
MERRA-2 | Pettitt | Buishand | Standard |
---|---|---|---|
minimum | 1.2 | 1.9 | 3.0 |
average | 32.7 | 34.0 | 33.8 |
maximum | 59.1 | 61.5 | 62.3 |
Pos. of Disc. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
Pettitt | 11 | 12 | 13 | 14 | 14 | 16 | 16 | 18 | 19 |
Buishand | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
Standard | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krizan, P.; Kozubek, M.; Lastovicka, J.; Lan, R. Share of Discontinuities in the Ozone Concentration Data from Three Reanalyses. Atmosphere 2021, 12, 1508. https://doi.org/10.3390/atmos12111508
Krizan P, Kozubek M, Lastovicka J, Lan R. Share of Discontinuities in the Ozone Concentration Data from Three Reanalyses. Atmosphere. 2021; 12(11):1508. https://doi.org/10.3390/atmos12111508
Chicago/Turabian StyleKrizan, Peter, Michal Kozubek, Jan Lastovicka, and Radek Lan. 2021. "Share of Discontinuities in the Ozone Concentration Data from Three Reanalyses" Atmosphere 12, no. 11: 1508. https://doi.org/10.3390/atmos12111508
APA StyleKrizan, P., Kozubek, M., Lastovicka, J., & Lan, R. (2021). Share of Discontinuities in the Ozone Concentration Data from Three Reanalyses. Atmosphere, 12(11), 1508. https://doi.org/10.3390/atmos12111508