Study of Radioactivity in Bajaur Norite Exposed in the Himalayan Tectonic Zone of Northern Pakistan
Abstract
:1. Introduction
2. Mineralogical Studies of Bajaur Norite
3. Material and Methods for Radiological Studies
3.1. Sample Collection and Preparation
3.2. Activity Measurements
4. Results and Discussion
4.1. Gamma-Ray Activities in the Bajaur Norite
4.2. Calculations of Radiological Hazard Indices
4.3. Atmosphere and Radon Gas
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://images.app.goo.gl/fUJxrjhKy6hsdgsA8 (accessed on 20 July 2021).
- Nordic. Naturally Occurring Radiation in the Nordic Countries: Recommendations. The Flag-Book Series, the Radiation Protection Authorities in Denmark, Finland, Iceland, Norway and Sweden, Reykjavik. (Nordic 2000). Available online: https://www.gr.is/wp-content/media/2013/07/NaturallyOccurringRadioactivity.pdf (accessed on 20 July 2021).
- Wiszniewska, J.; Krzemińska, E. Advances in geochronology in the Suwałki anorthosite massif and subsequent granite veins, northeastern Poland. Precambrian Res. 2021, 361, 106265. [Google Scholar] [CrossRef]
- Yang, Y.X.; Wu, X.M. Radioactivity concentrations in soils of the Xiazhuang Norite area. China Appl. Radiat. Isot. 2005, 63, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Benke, R.R.; Kearfott, K.J. Soil sample moisture content as a function of time during oven drying for gamma ray spectroscopic measurements. Nucl. Instrum. Methods Phys. Res. A 1999, 422, 817–819. [Google Scholar] [CrossRef]
- Akhtar, N.; Tufail, M. Natural radioactivity intake into wheat grown on fertilized farms in two districts of Pakistan. Radiat. Prot. Dosim. 2007, 123, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Tufail, M.; Akhtar, N.; Waqas, M. Measurement of terrestrial radiation for assessment of gamma dose from cultivated and barren soils of Faisalabad in Pakistan. Radiat. Meas. 2006, 41, 443–451. [Google Scholar] [CrossRef]
- Mantero, J.; Gázquez, M.J.; Hurtado, S.; Bolivar, J.P.; García-Tenorio, R. Application of gamma-ray spectrometry in a NORM industry for its radiometrical characterization. Radiat. Phys. Chem. 2015, 116, 78–81. [Google Scholar] [CrossRef]
- Younis, H.; Wasim, B.; Qureshi, A.A.; Ali, M.; Ahmad, F.; Mehboob, K.; Ajaz, M. Determination of Radioactivity Levels in the Virgin and Fertilized Soil Samples of Rawalpindi District, Pakistan. Iran. J. Sci. Technol. Trans. A Sci. 2021, 45, 1085–1095. [Google Scholar] [CrossRef]
- Younis, H. Qureshi, A.A.; Manzoor, S.; Anees, M. Measurement of Radioactivity in the Granites of Pakistan: A Review. Health Phys. 2018, 115, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Quindos, L.S.; Fernanadez, P.L.; Soto, J. Building Materials as Source of Exposure in Houses. Indoor Air 1987, 2, 365. [Google Scholar]
- United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation Report to United Nations; United Nations: New York, NY, USA, 2000. [Google Scholar]
- Khan, K.; Khan, H.M.; Tufail, M.; Khatibeh, A.H.; Ahmad, N. Radiometric analysis of Hazara phosphate rock and fertilizers in Pakistan. J. Environ. Radioact. 1998, 38, 77–384. [Google Scholar] [CrossRef]
- United Nations Scientific Committee on the Effects of Atomic Radiation. Exposure from Natural Sources of Radiation; 1993 Report to the General Assembly, with Scientific Annexes; UNSCEAR: Vienna, Austria, 1993. [Google Scholar]
- Beretka, J.; Matthew, P.J. Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys. 1985, 48, 87–95. [Google Scholar] [CrossRef] [PubMed]
- European Commission, Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials Directorate–General Environment, Nuclear Safety and Civil Protection. Radiation Protection 112 (EC) 1999. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/112.pdf (accessed on 20 July 2021).
- Younis, H.; Qureshi, A.A.; Wazir, Z.; Mehboob, K.; Ajaz, M. Measurement of Indoor Radon Concentration in the Hunza Valley of Karakoram Ranges Northern Pakistan. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 1153–1159. [Google Scholar] [CrossRef]
- Ahmad, S.; Ajaz, M.; Ali, Y.; Younis, H.; Khan, K.; Tabassam, U. Measurement of indoor radon concentration in district Mardan, Khyber Pakhtunkhwa, Pakistan. Nucl. Phys. At. Energy 2018, 19, 190–195. [Google Scholar] [CrossRef] [Green Version]
- Tzortzis, M.; Tsertos, H.; Christofides, S.; Christodoulides, G. Gamma-ray measurements of naturally occurring radioactive samples from Cyprus characteristic rocks. Radiat. Meas. 2003, 37, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Krieger, R. Radioactive of Construction Materials. Betonwerk und Fertigteil Technik 1981, 47, 468–473. [Google Scholar]
- Taskin, H.; Karavus, M.; Ay, P.; Topuzoglu, A.; Hidiroglu, S.; Karahan, G. Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J. Environ. Radioact. 2009, 100, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Orgun, Y.; Altınsoy, N.; Sahin, S.Y.; Gungor, Y.; Gultekin, A.H.; Karahan, G.; Karacık, Z. Natural and anthropogenic radionuclides in rocks and beach sands from Ezine region (Canakkale), Western Anatolia, Turkey. Appl. Radiat. Isot. 2007, 65, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Gaso, M.I.; Cervantes, M.L.; Segovia, N.; Espindola, V.H. Atmospheric Radon Concentration Levels. Radiat. Meas. 1994, 23, 225–230. [Google Scholar] [CrossRef]
- Ramsiya, M.; Joseph, A.; Jojo, P.J. Estimation of indoor radon and thoron in dwellings of Palakkad, Kerala, India using solid state nuclear track detectors. J. Radiat. Res. Appl. Sci. 2017, 10, 69–272. [Google Scholar] [CrossRef] [Green Version]
- Plagioclase Mineral Data. Available online: http://webmineral.com/data/Plagioclase.shtml#.YR5A6YgzbIU (accessed on 15 August 2021).
- Carmichael, I.S.E.; Turner, F.J.; Verhoogen, J. Igneous Petrology, 2nd ed.; McGraw-Hill: New York, NY, USA, 1974; pp. 603–620. [Google Scholar]
- Qureshi, A.A.; Manzoor, S.; Younis, H.; Shah, K.H.; Ahmed, T. Assessment of radiation dose and excessive life–time cnacer risk from the Buner granite, Northern Pakistan. Radiat. Prot. Dosim. 2018, 178, 143–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://th.bing.com/th/id/R.18ffed079762d777124822fb6d1d3054?rik=OdrtAaTiRm4rrg&riu=http%3a%2f%2fgeology.com%2fminerals%2fphotos%2ffeldspar-classification.gif&ehk=uBmAq3X8o9qT89M4456DlUiYuvLXDf1y3X%2bFXEDex48%3d&risl=&pid=ImgRaw&r=0 (accessed on 20 July 2021).
Sample No | Radium Bq/kg | Thorium Bq/kg | Potassium Bq/kg | Total Bq/kg |
---|---|---|---|---|
1 | 5.0 5 ± 0.05 | 3.49 ± 0.57 | 185.33 ± 5.45 | 193.87 ± 6.07 |
2 | 5.08 ± 0.32 | 3.62 ± 0.14 | 212.49 ± 3.74 | 221.19 ± 4.20 |
3 | 4.03 ± 0.1 | 3.74 ± 0.19 | 183.29 ± 6.57 | 191.06 ± 6.86 |
4 | 5.19 ± 0.24 | 4.38 ± 0.27 | 200.46 ± 11.18 | 210.03 ± 11.69 |
5 | 5.45 ± 0.09 | 4.61 ± 0.27 | 251.71 ± 6.31 | 261.77 ± 6.67 |
6 | 4.63 ± 0.10 | 4.74 ± 0.30 | 228.81 ± 4.40 | 238.18 ± 4.80 |
7 | 4.3 ± 0.030 | 4.16 ± 0.82 | 181.26 ± 3.81 | 189.72 ± 4.66 |
8 | 5.97 ± 0.08 | 2.21 ± 0.11 | 103.98 ± 2.49 | 112.16 ± 2.68 |
9 | 8.36 ± 0.26 | 4.18 ± 0.32 | 205.73 ± 4.66 | 218.27 ± 5.24 |
10 | 4.09 ± 0.09 | 3.72 ± 0.33 | 160.94 ± 9.66 | 168.75 ± 10.08 |
11 | 3.84 ± 0.05 | 3.75 ± 0.22 | 149.82 ± 5.45 | 157.41 ± 5.72 |
12 | 4.46 ± 0.17 | 3.59 ± 0.24 | 127.26 ± 6.64 | 135.31 ± 7.05 |
13 | 4.38 ± 0.09 | 3.91 ± 0.19 | 202.17 ± 2.56 | 210.46 ± 2.84 |
14 | 4.77 ± 0.42 | 3.29 ± 0.21 | 162.65 ± 3.68 | 170.71 ± 4.31 |
15 | 5.23 ± 0.10 | 4.13 ± 0.49 | 226.05 ± 3.94 | 235.41 ± 4.53 |
16 | 5.28 ± 0.17 | 5.16 ± 0.45 | 250.97 ± 3.28 | 261.41 ± 3.90 |
17 | 5.38 ± 0.11 | 4.96 ± 0.28 | 363.44 ± 3.15 | 373.78 ± 3.54 |
18 | 5.19 ± 0.09 | 4.71 ± 0.28 | 246.83 ± 3.55 | 256.73 ± 3.92 |
19 | 4.82 ± 0.13 | 4.43 ± 0.40 | 238.74 ± 2.76 | 247.99 ± 3.29 |
20 | 4.26 ± 0.10 | 4.50 ± 0.28 | 217.04 ± 5.52 | 225.80 ± 5.90 |
Average | 4.98 ± 0.13 | 4.03 ± 0.31 | 204.40 ± 4.72 | 214.00 ± 5.39 |
WGA | 42.00 | 73.00 | 1055.00 | 1170.00 [12] |
BMA | 50.00 | 50.00 | 500.00 | 600.00 |
Indices | Formulae References | * World’s Average of Building Materials | Limit References |
---|---|---|---|
Outdoor Hazard Indices | |||
Gamma Index () | 0.58 | for Bulk use restricted use | |
Radium Equivalent () | (Bq/kg) | 159.8 | 370 |
Outdoor Hazard Index | 0.43 | line <1 | |
Outdoor External Dose | (nGyh ) | 74.15 | 51 |
Outdoor Annual Effective Dose | 0.09 | 1;20 for radiation workers | |
Outdoor Excessive Life Time Cancer Risk () | (LE is life expectancy RF is fatal risk factor per Sievert that is 0.05) | ||
Indoor Hazard Indices | |||
Alpha Index () | 0.25 | <1 | |
Indoor Hazard Index | 0.57 | <1 | |
Indoor External Dose | (nGyh ) | 141 | 55 |
Indoor Annual Effective Dose | (mSvy ) | 0.69 | 2 |
Indoor Excessive Life Time Cancer Risk () | (LE is life expectancy RF is fatal risk factor per Sievert that is 0.05) |
No | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.03 | 23.38 | 0.11 | 0.08 | 0.40 | 24.36 | 0.10 | 12.20 | 0.01 | 0.07 | 0.05 |
2 | 0.03 | 25.65 | 0.13 | 0.09 | 0.44 | 26.59 | 0.11 | 13.39 | 0.02 | 0.07 | 0.06 |
3 | 0.02 | 22.49 | 0.11 | 0.07 | 0.39 | 23.48 | 0.09 | 11.77 | 0.01 | 0.06 | 0.05 |
4 | 0.03 | 25.63 | 0.13 | 0.09 | 0.44 | 26.87 | 0.11 | 13.40 | 0.02 | 0.07 | 0.06 |
5 | 0.03 | 30.18 | 0.15 | 0.10 | 0.52 | 31.35 | 0.12 | 15.77 | 0.02 | 0.08 | 0.07 |
6 | 0.02 | 27.79 | 0.14 | 0.09 | 0.48 | 29.01 | 0.12 | 14.55 | 0.02 | 0.08 | 0.06 |
7 | 0.02 | 23.03 | 0.11 | 0.08 | 0.40 | 24.19 | 0.10 | 12.06 | 0.01 | 0.07 | 0.05 |
8 | 0.01 | 13.48 | 0.07 | 0.05 | 0.23 | 14.13 | 0.06 | 7.04 | 0.01 | 0.04 | 0.03 |
9 | 0.04 | 28.75 | 0.14 | 0.10 | 0.49 | 30.16 | 0.12 | 14.97 | 0.02 | 0.08 | 0.06 |
10 | 0.02 | 20.74 | 0.10 | 0.07 | 0.36 | 21.79 | 0.09 | 10.85 | 0.01 | 0.06 | 0.05 |
11 | 0.02 | 19.65 | 0.10 | 0.07 | 0.34 | 20.73 | 0.08 | 10.29 | 0.01 | 0.06 | 0.04 |
12 | 0.02 | 18.24 | 0.09 | 0.06 | 0.31 | 19.39 | 0.08 | 9.54 | 0.01 | 0.05 | 0.04 |
13 | 0.02 | 24.49 | 0.12 | 0.08 | 0.42 | 25.50 | 0.10 | 12.81 | 0.02 | 0.07 | 0.06 |
14 | 0.02 | 21.02 | 0.10 | 0.07 | 0.36 | 21.98 | 0.09 | 10.97 | 0.01 | 0.06 | 0.05 |
15 | 0.03 | 27.45 | 0.13 | 0.09 | 0.47 | 28.53 | 0.11 | 14.34 | 0.02 | 0.08 | 0.06 |
16 | 0.03 | 30.61 | 0.15 | 0.10 | 0.53 | 31.96 | 0.13 | 16.02 | 0.02 | 0.09 | 0.07 |
17 | 0.03 | 39.47 | 0.19 | 0.12 | 0.68 | 40.41 | 0.16 | 20.63 | 0.03 | 0.11 | 0.09 |
18 | 0.03 | 29.67 | 0.15 | 0.10 | 0.51 | 30.87 | 0.12 | 15.52 | 0.02 | 0.08 | 0.07 |
19 | 0.02 | 28.41 | 0.14 | 0.09 | 0.49 | 29.51 | 0.12 | 14.86 | 0.02 | 0.08 | 0.06 |
20 | 0.02 | 26.24 | 0.13 | 0.09 | 0.45 | 27.39 | 0.11 | 13.74 | 0.02 | 0.07 | 0.06 |
Average | 0.02 | 25.31 | 0.2 | 0.08 | 0.43 | 26.41 | 0.106 | 13.23 | 0.016 | 0.07 | 0.05 |
WGA | 203.34 | 1.00 | 0.07 | 3.49 | 0.86 | 107.49 | 0.13 | 0.46 | |||
BMA | 141 | 0.69 | 2.41 | 0.58 | 76.05 | 0.09 | 1.31 | ||||
Limits | 55 | 2 | 2.41 | 1 | 51 | 1 | 0.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Younis, H.; Ahmad, F.; Shehzadi, R.; Asghar, I.; Ahmad, T.; Ajaz, M.; Waqas, M.; Mehboob, K.; Qureshi, A.A.; Haj Ismail, A.A.K. Study of Radioactivity in Bajaur Norite Exposed in the Himalayan Tectonic Zone of Northern Pakistan. Atmosphere 2021, 12, 1385. https://doi.org/10.3390/atmos12111385
Younis H, Ahmad F, Shehzadi R, Asghar I, Ahmad T, Ajaz M, Waqas M, Mehboob K, Qureshi AA, Haj Ismail AAK. Study of Radioactivity in Bajaur Norite Exposed in the Himalayan Tectonic Zone of Northern Pakistan. Atmosphere. 2021; 12(11):1385. https://doi.org/10.3390/atmos12111385
Chicago/Turabian StyleYounis, Hannan, Farooq Ahmad, Ramoona Shehzadi, Ishrat Asghar, Tanveer Ahmad, Muhammad Ajaz, Muhammad Waqas, Khurram Mehboob, Aziz Ahmad Qureshi, and Abd Al Karim Haj Ismail. 2021. "Study of Radioactivity in Bajaur Norite Exposed in the Himalayan Tectonic Zone of Northern Pakistan" Atmosphere 12, no. 11: 1385. https://doi.org/10.3390/atmos12111385
APA StyleYounis, H., Ahmad, F., Shehzadi, R., Asghar, I., Ahmad, T., Ajaz, M., Waqas, M., Mehboob, K., Qureshi, A. A., & Haj Ismail, A. A. K. (2021). Study of Radioactivity in Bajaur Norite Exposed in the Himalayan Tectonic Zone of Northern Pakistan. Atmosphere, 12(11), 1385. https://doi.org/10.3390/atmos12111385