Method of Source Identification Following an Accidental Release at an Unknown Location Using a Lagrangian Atmospheric Dispersion Model
Abstract
:1. Introduction
2. Method Description
2.1. Assessment of Source Location
2.2. Assessment of Release Start/End Times and Inventory
3. Method Evaluation against ETEX-I
3.1. DIPCOT Setup for the Conditions of ETEX-I
3.2. Results of Simulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masson, O.; Steinhauser, G.; Zok, D.; Saunier, O.; Angelov, H.; Babić, D.; Bečková, V.; Bieringer, J.; Bruggeman, M.; Burbidge, C.; et al. Airborne concentrations and chemical considerations of radioactive ruthenium from an undeclared major nuclear release in 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 16750–16759. [Google Scholar] [CrossRef] [Green Version]
- Masson, O.; Steinhauser, G.; Wershofen, H.; Mietelski, J.W.; Fischer, H.W.; Pourcelot, L.; Saunier, O.; Bieringer, J.; Steinkopff, T.; Hýža, M.; et al. Potential Source Apportionment and Meteorological Conditions Involved in Airborne 131I Detections in January/February 2017 in Europe. Environ. Sci. Technol. 2018, 52, 8488–8500. [Google Scholar] [CrossRef] [Green Version]
- Tichý, O.; Šmídl, V.; Hofman, R.; Sindelarova, K.; Hýža, M.; Stohl, A. Bayesian inverse modeling and source location of an unintended 131I release in Europe in the fall of 2011. Atmos. Chem. Phys. Discuss. 2017, 17, 12677–12696. [Google Scholar] [CrossRef] [Green Version]
- Persson, C.; Rodhe, H.; De Geer, L.-E. The Chernobyl Accident: A Meteorological Analysis of How Radionuclides Reached and Were Deposited in Sweden. AMBIO 1987, 16, 20–31. [Google Scholar]
- Marchuk, G.; Shutyaev, V.; Bocharov, G. Adjoint equations and analysis of complex systems: Application to virus infection modelling. J. Comput. Appl. Math. 2005, 184, 177–204. [Google Scholar] [CrossRef]
- Pudykiewicz, J.A. Application of adjoint tracer transport equations for evaluating source parameters. Atmos. Environ. 1998, 32, 3039–3050. [Google Scholar] [CrossRef]
- Wotawa, G.; De Geer, L.-E.; Denier, P.; Kalinowski, M.; Toivonen, H.; D’Amours, R.; Desiato, F.; Issartel, J.-P.; Langer, M.; Seibert, P.; et al. Atmospheric transport modelling in support of CTBT verification—Overview and basic concepts. Atmos. Environ. 2003, 37, 2529–2537. [Google Scholar] [CrossRef]
- Sørensen, J.H. Method for source localization proposed and applied to the October 2017 case of atmospheric dispersion of Ru-106. J. Environ. Radioact. 2018, 189, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Saunier, O.; Didier, D.; Mathieu, A.; Masson, O.; Le Brazidec, J.D. Atmospheric modeling and source reconstruction of radioactive ruthenium from an undeclared major release in 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24991–25000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovalets, I.V.; Romanenko, O.; Synkevych, R. Adaptation of the RODOS system for analysis of possible sources of Ru-106 detected in 2017. J. Environ. Radioact. 2020, 220–221, 106302. [Google Scholar] [CrossRef]
- Tomas, J.M.; Peereboom, V.; Kloosterman, A.; van Dijk, A. Detection of radioactivity of unknown origin: Protective actions based on inverse modelling. J. Environ. Radioact. 2021, 235–236, 106643. [Google Scholar] [CrossRef]
- Dumont Le Brazidec, J.; Bocquet, M.; Saunier, O.; Roustan, Y. Quantification of the modelling uncertainties in atmospheric release source assessment and application to the reconstruction of the autumn 2017 Ruthenium 106 source. Atmos. Chem. Phys. 2021, 21, 13247–13267. [Google Scholar] [CrossRef]
- Nodop, K.; Connolly, R.; Girardi, F. The field campaigns of the European Tracer Experiment (ETEX): Overview and results. Atmos. Environ. 1998, 32, 4095–4108. [Google Scholar] [CrossRef]
- Grazianni, G.; Klug, W.; Mosca, S. Real-Time, Long-Range Dispersion Model Evaluation of the ETEX First Experiment. Report EUR 17754/EN; Office for Official Publications of the European Communities: Luxembourg, 1998; ISBN 92-828-3657-6. [Google Scholar]
- Krysta, M.; Bocquet, M. Source reconstruction of an accidental radionuclide release at European scale. Q. J. R. Meteorol. Soc. 2007, 133, 529–544. [Google Scholar] [CrossRef]
- Adam, L.; Branda, M. Sparse optimization for inverse problems in atmospheric modelling. Environ. Model. Softw. 2016, 79, 256–266. [Google Scholar] [CrossRef]
- Tichý, O.; Ulrych, L.; Šmídl, V.; Evangeliou, N.; Stohl, A. On the tuning of atmospheric inverse methods: Comparisons with the European Tracer Experiment (ETEX) and Chernobyl datasets using the atmospheric transport model FLEXPART. Geosci. Model Dev. 2020, 13, 5917–5934. [Google Scholar] [CrossRef]
- Machkour, J.; Muma, M.; Alt, B.; Zoubir, A.M. A robust adaptive Lasso estimator for the independent contamination model. Signal Process. 2020, 174, 107608. [Google Scholar] [CrossRef]
- Winiarek, V.; Vira, J.; Bocquet, M.; Sofiev, M.; Saunier, O. Towards the operational estimation of a radiological plume using data assimilation after a radiological accidental atmospheric release. Atmos. Environ. 2011, 45, 2944–2955. [Google Scholar] [CrossRef] [Green Version]
- Kovalets, I.; Andronopoulos, S.; Hofman, R.; Seibert, P.; Ievdin, I.; Pylypenko, O. Advanced Source Inversion Module of the JRODOS System. In Pollutants from Energy Sources. Energy, Environment, and Sustainability; Agarwal, R., Agarwal, A., Gupta, T., Sharma, N., Eds.; Springer: Singapore, 2018; pp. 149–186. [Google Scholar] [CrossRef]
- Andronopoulos, S.; Davakis, E.; Bartzis, J.G. RODOS-DIPCOT Model Description and Evaluation. Report RODOS(RA2)-TN(09)01. 2009. Available online: https://resy5.iket.kit.edu/RODOS/Documents/Public/HandbookV6f/Volume3/RA2TN0901_DIPCOT.pdf (accessed on 6 October 2021).
- Andronopoulos, S.; Davakis, E.; Bartzis, J.; Kovalets, I. RODOS meteorological pre-processor and atmospheric dispersion model DIPCOT: A model suite for radionuclides dispersion in complex terrain. Radioprotection 2010, 45, S77–S84. [Google Scholar] [CrossRef] [Green Version]
- Landman, C.; Päsler-Sauer, J.; Raskob, W. The Decision Support System RODOS. In The Risks of Nuclear Energy Technology. Science Policy Reports; Springer: Berlin/Heidelberg, Germany, 2014; pp. 337–348. [Google Scholar] [CrossRef]
- Kovalets, I.V.; Efthimiou, G.C.; Andronopoulos, S.; Venetsanos, A.G.; Argyropoulos, C.D.; Kakosimos, K.E. Inverse identification of unknown finite-duration air pollutant release from a point source in urban environment. Atmos. Environ. 2018, 181, 82–96. [Google Scholar] [CrossRef]
- Nguyen, K.; Noonan, J.; Galbally, I.; Physick, W. Predictions of plume dispersion in complex terrain: Eulerian versus Lagrangian models. Atmos. Environ. 1997, 31, 947–958. [Google Scholar] [CrossRef]
- Bartzis, J.; Efthimiou, G.; Andronopoulos, S. Modelling Exposure from Airborne Hazardous Short-Duration Releases in Urban Environments. Atmosphere 2021, 12, 130. [Google Scholar] [CrossRef]
- Davakis, E.; Andronopoulos, S.; Kovalets, I.; Gounaris, N.; Bartzis, J.; Nychas, S. Data assimilation in meteorological pre-processors: Effects on atmospheric dispersion simulations. Atmos. Environ. 2007, 41, 2917–2932. [Google Scholar] [CrossRef]
- Davison, A.C.; Hinkley, D. Bootstrap Methods and Their Applications; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
Case | Lon, Deg. | Lat, Deg. | Dist. to True Source, km | Maximum Corr. Coef. |
---|---|---|---|---|
True | −2.008 | 48.058 | 0 | - |
SI-1a (all obs.) | −0.678 | 48.007 | 99.3 | 0.41 |
SI-1b (time-int. obs.) | −0.763 | 47.807 | 97.0 | 0.76 |
Parameter | True | Estimated |
---|---|---|
Lon, deg | −2.008 | −0.712 |
Lat, deg. | 48.058 | 47.625 |
Dist. to true src., km | 0 | 108 km |
Release start date-time | 23 October, 16:10 | 23 October, 15:00 |
Release duration, h | 12 | 21 |
Release rate, g/s | 7.95 | 4.28 |
Released mass, kg | 343.44 | 323.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andronopoulos, S.; Kovalets, I.V. Method of Source Identification Following an Accidental Release at an Unknown Location Using a Lagrangian Atmospheric Dispersion Model. Atmosphere 2021, 12, 1305. https://doi.org/10.3390/atmos12101305
Andronopoulos S, Kovalets IV. Method of Source Identification Following an Accidental Release at an Unknown Location Using a Lagrangian Atmospheric Dispersion Model. Atmosphere. 2021; 12(10):1305. https://doi.org/10.3390/atmos12101305
Chicago/Turabian StyleAndronopoulos, Spyros, and Ivan V. Kovalets. 2021. "Method of Source Identification Following an Accidental Release at an Unknown Location Using a Lagrangian Atmospheric Dispersion Model" Atmosphere 12, no. 10: 1305. https://doi.org/10.3390/atmos12101305
APA StyleAndronopoulos, S., & Kovalets, I. V. (2021). Method of Source Identification Following an Accidental Release at an Unknown Location Using a Lagrangian Atmospheric Dispersion Model. Atmosphere, 12(10), 1305. https://doi.org/10.3390/atmos12101305