Evaluation of Different Storm Parameters as the Proxies for Gridded Total Lightning Flash Rates: A Convection-Allowing Model Study
Abstract
:1. Introduction
2. Methodology and Model Description
2.1. Description of the Severe Convective Event
2.2. Model Setup and Radar Data Assimilation Scheme
2.3. Quantitative Evaluation Method
2.4. Data for Assimilation and Verification
2.5. Radar Reflectivity Data Assimilation
3. Results
3.1. Evaluation of the Simulation Results of the MCS
3.2. Proxies for Diagnosis of Gridded Total Lightning Flash Rates
3.3. Optimal Coefficients for Each Lightning Diagnostic Scheme with Different Proxies
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schumann, U.; Huntrieser, H. The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys. 2007, 7, 3823–3907. [Google Scholar] [CrossRef] [Green Version]
- Fierro, A.O.; Mansell, E.R.; Ziegler, C.L.; MacGorman, D.R. Application of a lightning data assimilation technique in the WRF-ARW model at cloud-resolving scales for the tornado outbreak of 24 May 2011. Mon. Weather Rev. 2012, 140, 2609–2627. [Google Scholar] [CrossRef]
- Fierro, A.O.; Clark, A.J.; Mansell, E.R.; MacGorman, D.R.; Dembek, S.R.; Ziegler, C.L. Impact of Storm-Scale Lightning Data Assimilation on WRF-ARW Precipitation Forecasts during the 2013 Warm Season over the Contiguous United States. Mon. Weather. Rev. 2015, 143, 757–777. [Google Scholar] [CrossRef]
- Mansell, E.R. Storm-scale ensemble Kalman filter assimilation of total lightning flash-extent data. Mon. Weather Rev. 2014, 142, 3683–3695. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Cheng, W.Y.; Zhao, T.; Xu, M.; Liu, Y.; Shen, S.; Calhoun, K.M.; Fierro, A.O. Improving Lightning and Precipitation Prediction of Severe Convection using Lightning Data Assimilation with NCAR WRF-RTFDDA: A lightning data assimilation method. J. Geophys. Res. Atmos. 2017, 122, 12296–12316. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Zhao, T.; Liu, Y.; Xu, M.; Shen, S.; Jiang, Y.; Yang, H.; Feng, S. Continuous assimilation of lightning data using time-lagged ensembles for a convection-allowing numerical weather prediction model. J. Geophys. Res. Atmos. 2018, 123, 9652–9673. [Google Scholar] [CrossRef]
- Fierro, A.O.; Mansell, E.R.; MacGorman, D.R.; Ziegler, C.L. The Implementation of an Explicit Charging and Discharge Lightning Scheme within the WRF-ARW Model: Benchmark Simulations of a Continental Squall Line, a Tropical Cyclone, and a Winter Storm. Mon. Weather Rev. 2013, 141, 2390–2415. [Google Scholar] [CrossRef]
- Mostajabi, A.; Finney, D.L.; Rubinstein, M.; Rachidi, F. Nowcasting lightning occurrence from commonly available meteorological parameters using machine learning techniques. NPJ Clim. Atmos. Sci. 2019, 2, 1–15. [Google Scholar] [CrossRef]
- Moon, S.H.; Kim, Y.H. Forecasting lightning around the Korean Peninsula by postprocessing ECMWF data using SVMs and undersampling. Atmos. Res. 2020, 5, 105026. [Google Scholar] [CrossRef]
- Carey, L.D.; Rutledge, S.A. A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm. Meteorol. Atmos. Phys. 1996, 59, 33–64. [Google Scholar] [CrossRef]
- Prigent, C.; Defer, E.; Pardo, J.R.; Pearl, C.; Rossow, W.B.; Pinty, J. Relations of polarized scattering signatures observed by the TRMM Microwave instrument with electrical processes in cloud systems. Geophys. Res. Lett. 2005, 32, L04810. [Google Scholar] [CrossRef] [Green Version]
- Wiens, K.C.; Rutledge, S.A.; Tessendorf, S.A. The 29 June 2000 Supercell Observed during STEPS. Part II: Lightning and Charge Structure. J. Atmospheric Sci. 2005, 62, 4151–4177. [Google Scholar] [CrossRef]
- Lang, T.J.; Rutledge, S.A. Relationships between con- vective storm kinematics, precipitation, and lightning. Mon. Weather Rev. 2002, 130, 2492–2506. [Google Scholar] [CrossRef]
- Deierling, W.; Petersen, W.A.; Latham, J.; Ellis, S.; Christian, H.J. The relationship between lightning activity and ice fluxes in thunderstorms. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, S.E.; Brook, M.; Gourley, M.F. Thunderstorm Charge Separation. J. Atmos. Sci. 1957, 14, 426–436. [Google Scholar] [CrossRef] [Green Version]
- Williams, E.R.; Lhermitte, R.M. Radar Tests of the Precipitation Hypothesis for Thunderstorm Electrification. J. Geophys. Res. Ocean. 1983, 88, 10984–10992. [Google Scholar] [CrossRef]
- Saunders, C.P.R. A Review of Thunderstorm Electrification Processes. J. Appl. Meteorol. 1993, 32, 642–655. [Google Scholar] [CrossRef]
- Takahashi, T. Riming Electrification as a Charge Generation Mechanism in Thunderstorms. J. Atmos. Sci. 1978, 35, 1536–1548. [Google Scholar] [CrossRef]
- McCaul, E.W., Jr.; Goodman, S.J.; LaCasse, K.M.; Cecil, D.J. Forecasting Lightning Threat Using Cloud-Resolving Model Simulations. Weather Forecast. 2009, 24, 709–729. [Google Scholar] [CrossRef]
- Blyth, A.M.; Christian, H.J., Jr.; Driscoll, K.; Gadian, A.M.; Latham, J. Determination of ice precipitation rates and thunderstorm anvil ice contents from satellite observations of lightning. Atmos. Res. 2001, 59, 217–229. [Google Scholar] [CrossRef]
- Deierling, W.; Petersen, W.A. Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Lund, N.R.; MacGorman, D.R.; Schuur, T.J.; Biggerstaff, M.I.; Rust, W.D. Relationships between Lightning Location and Polarimetric Radar Signatures in a Small Mesoscale Convective System. Mon. Weather Rev. 2009, 137, 4151–4170. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Cecil, D.J.; Zipser, E.J.; Kronfeld, K.; Robertson, R. Relationships between lightning flash rates and radar reflectivity vertical structures in thunderstorms over the tropics and subtropics. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Petersen, W.A.; Christian, H.J.; Rutledge, S.A. TRMM observations of the global relationship between ice water content and lightning. Geophys. Res. Lett. 2005, 32, 2471–2494. [Google Scholar] [CrossRef] [Green Version]
- Cecil, D.J.; Goodman, S.J.; Boccippio, D.J.; Zipser, E.J.; Nesbitt, S.W. Three Years of TRMM Precipitation Features. Part I: Radar, Radiometric, and Lightning Characteristics. Mon. Wea. Rev. 2005, 133, 543–566. [Google Scholar] [CrossRef] [Green Version]
- Barthe, C.; Deierling, W.; Barth, M.C. Estimation of total lightning from various storm parameters: A cloud-resolving model study. J. Geophys. Res. 2010, 115, D24202. [Google Scholar] [CrossRef]
- Basarab, B.M.; Rutledge, S.A.; Fuchs, B.R. An improved lightning flash rate parameterization developed from Colorado DC3 thunderstorm data for use in cloud-resolving chemical transport models. J. Geophys. Res. Atmos. 2015, 120. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Ek, M.B. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos. 2003, 108, 8851. [Google Scholar] [CrossRef]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Janjic, Z.I. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef] [Green Version]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Grell, G.A.; Freitas, S.R. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys. 2013, 13, 5233–5250. [Google Scholar] [CrossRef]
- Roberts, N.M.; Lean, H.W. Scale-Selective Verification of Rainfall Accumulations from High-Resolution Forecasts of Convective Events. Mon. Weather Rev. 2008, 136, 78. [Google Scholar] [CrossRef]
- Zhang, Y.; Lü, W.; Chen, S.; Zheng, D.; Zhang, Y.; Yan, X.; Pan, H. Areview of advances in lightning observations during the past decade in Guangdong, China. J. Meteorol. Res. 2016, 30, 800–819. [Google Scholar] [CrossRef]
- Hu, M.; Xue, M. Implementation and evaluation of cloud analysis with WSR-88D reflectivity data for GSI and WRF-ARW. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Liu, Y.; Xu, M.; Liu, Y.; Pan, L.; Wang, H.; Cheng, W.Y.; Jiang, Y.; Lan, H.; Yang, H.; et al. Forecasting severe convective storms with WRF-based RTFDDA radar data assimilation in Guangdong, China. Atmos. Res. 2018, 209, 131–143. [Google Scholar] [CrossRef]
- Skok, G.; Nigel, R. Analysis of Fractions Skill Score properties for random precipitation fields and ECMWF forecasts. Q. J. R. Meteorol. Soc. 2016, 142, 2599–2610. [Google Scholar] [CrossRef]
- Skok, G. Analysis of Fraction Skill Score properties for a displaced rainband in a rectangular domain. Meteorol. Appl. 2015, 22, 477–484. [Google Scholar] [CrossRef]
Parameter (Units) | Equation | Parameter and Threshold Used to Compute the Corresponding Volume | Filter Parameter and Threshold | Linear Coefficient (k) |
---|---|---|---|---|
Graupel volume (km3) | qg (0.5 g∙kg−1) | / | 0.447934 | |
Precipitation ice mass (kg) | / | Column-maximum qg (0.6 g∙kg−1) | 0.256011 | |
Radar echo volume (km3) | Reflectivity (44 dBZ) | / | 0.213345 | |
Maximum updraft (m∙s−1) | / | Maximum updraft (3 m∙s−1) | 0.055901 | |
Updraft volume (km3) | Updraft (3 m∙s−1) | / | 0.175862 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, X.; Wang, H. Evaluation of Different Storm Parameters as the Proxies for Gridded Total Lightning Flash Rates: A Convection-Allowing Model Study. Atmosphere 2021, 12, 95. https://doi.org/10.3390/atmos12010095
Qian X, Wang H. Evaluation of Different Storm Parameters as the Proxies for Gridded Total Lightning Flash Rates: A Convection-Allowing Model Study. Atmosphere. 2021; 12(1):95. https://doi.org/10.3390/atmos12010095
Chicago/Turabian StyleQian, Xinyao, and Haoliang Wang. 2021. "Evaluation of Different Storm Parameters as the Proxies for Gridded Total Lightning Flash Rates: A Convection-Allowing Model Study" Atmosphere 12, no. 1: 95. https://doi.org/10.3390/atmos12010095
APA StyleQian, X., & Wang, H. (2021). Evaluation of Different Storm Parameters as the Proxies for Gridded Total Lightning Flash Rates: A Convection-Allowing Model Study. Atmosphere, 12(1), 95. https://doi.org/10.3390/atmos12010095