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Abstract: Lightning simulation is important for a variety of applications, including lightning forecast,
atmospheric chemical simulation, and lightning data assimilation. In this study, the potential of five
storm parameters (graupel volume, precipitation ice mass, radar echo volume, maximum updraft,
and updraft volume) to be used as the proxy for the diagnosis of gridded total lightning flash rates
has been investigated in a convection-allowing model. A mesoscale convective system occurred in
the Guangdong province of China was selected as the test case. Radar data assimilation was used
to improve the simulation accuracy of the convective clouds, hence providing strong instantaneous
correlations between observed and simulated storm signatures. The areal coverage and magnitude
of the simulated lightning flash rates were evaluated by comparing to those of the total lightning
observations. Subjective and the Fractions Skill Score (FSS) evaluations suggest that all the five
proxies tested in this study are useful to indicate general tendencies for the occurrence, region, and
time of lightning at convection-allowing scale (FSS statistics for the threshold of 1 flash per 9 km2 per
hour were around 0.7 for each scheme). The FSS values were decreasing as the lightning flash rate
thresholds used for FSS computation increased for all the lightning diagnostic schemes with different
proxies. For thresholds from 1 to 3 and 16 to 20 flashes per 9 km2 per hour, the graupel contents
related schemes achieved higher FSS values compared to the other three schemes. For thresholds
from 5 to 15 flashes per 9 km2 per hour, the updraft volume related scheme yielded the largest FSS.
When the thresholds of lightning flash rates were greater than 13 flashes per 9 km2 per hour, the FSS
values were below 0.5 for all the lightning diagnostic schemes with different proxies.

Keywords: lightning simulation; gridded total lightning flash rates; radar data assimilation; convec-
tive weather; convection-allowing model

1. Introduction

Lightning can disrupt power service, threaten aviation safety, trigger forest fires.
Lightning is also known to be a source of nitrogen oxides (NO + NO2 = NOx), which can in
turn affect the net production of ozone [1]. Simulation of lightning activity is important not
only in operational numerical weather prediction (NWP) models but also in atmospheric
chemical models. On the other hand, lightning data have found to be a useful data source
for assimilation in NWP models to improve the accuracy of convective weather [2–6].
Lightning diagnostic scheme can serve as observation operator for the direct assimilation
of lightning data.

Explicit electrification and discharge schemes have been developed for convection-
allowing scale NWP models [7]. Such lightning simulation schemes can provide the
information of thunderstorm charge structures, and fine space and time scales quantitative
lightning simulations including frequency, location. However, such full electrification,
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discharge schemes are remaining computationally expensive, and uncertainties are existed
in such schemes due to the complexities of electrification and lightning discharge process.

Machine learning techniques have also been applied on the forecast and nowcasting
of lightning activity [8,9]. These studies utilize multiple meteorological parameters related
to the occurrence of thunderstorm as the training data to train machine learning algorithms
for forecasting or nowcasting lightning activity, and the results are promising. Although the
present studies using machine learning techniques focus more on the forecast of lightning
probability or binary occurrence or non-occurrence of lightning, rather than on the forecast
of specific gridded lightning flash rates, this method has great potential to be used in the
simulation of gridded lightning flash rates at convective-allowing scale.

Previous studies have found that total lightning frequency is related to graupel con-
tents, updraft characteristics [10–14]. Much evidence suggests that these correlations
are due to the primary role of the noninductive electrification mechanism in thunder-
storm electrification (i.e., rebound collisions between graupel and ice with the existence
of supercooled liquid water [15–18]). Lightning diagnostic schemes, which employ such
empirically–derived statistical relationships between lightning flash rates and kinematic,
microphysical parameters of thunderstorms, are widely used in the convection-allowing
scale models due to its high computational efficiency. For example, McCaul et al. [19]
devised two formulations dependent on the contents of ice-phase hydrometeors to simulate
total lightning flash rates of thunderstorms in convection-allowing models.

Multiple past studies have performed to derive quantitative relationships between
lightning flash rates and thunderstorm parameters. Thunderstorm parameters which have
shown a good correlation with lightning flash rates include precipitation ice mass [20],
updraft volume [21], graupel volume [22], and radar reflectivity [23]. Those proxies have
been found in global observational studies [24,25] to be strongly related to storm total flash
rates. Barthe et al. [26] and Basarab et al. [27] have evaluated the ability of these proxies
in simulating total lightning flash rates in cloud-resolving models. However, due to the
difficulty in accurately modeling convective clouds in terms of location, structure and
intensity, their studies did not aim at evaluating simulated lightning flash rates on each
grid cell. Instead, they evaluated the lightning flash rates simulation results at the scale of
the whole thunderstorm.

In this study, the ability of five storm parameters, including graupel volume, precip-
itation ice mass, radar echo volume, maximum updraft, updraft volume, on diagnosing
gridded lightning flash rates was evaluated in a convection-allowing model. Radar data
assimilation was used to improve the simulation accuracy of the convective clouds, hence
providing strong instantaneous correlations between observed and simulated storm signa-
tures. A mesoscale convective system (MCS) occurred in Guangdong province (a coastal
province) of China was selected as the test case to perform the experiments. The evaluation
results are expected to provide useful information for fine-scale lightning simulation and
lightning forward operator used in lightning data assimilation.

2. Methodology and Model Description
2.1. Description of the Severe Convective Event

On 16 June 2017, several discrete convections formed over the Guangdong Province
of China around 0300 UTC. For the next few hours, these discrete convective cells moved
southeastward and intensified. Some of the convective cells gradually merged into a
MCS by 1000 UTC. The leading convective line of the MCS moved southeastward into the
South China Sea by 1700 UTC. The evolution of this MCS was complex with the frequent
initiation, merging, and dissipation of convective cells. During this period, the 850-hPa
relative humidity exceeded 90% and the maximum convective available potential energy
exceeded 1700 J/kg over much of Guangdong Province, which favored the development of
severe convection.
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2.2. Model Setup and Radar Data Assimilation Scheme

The numerical model used in this study is the three-dimensional compressible nonhy-
drostatic Weather Research and Forecasting model version 4.1.2 (WRF 4.1.2). The mode
includes three domains with horizontal grid spacing of 27, 9 and 3 km, respectively.
Each domain features 43 vertical eta levels with a model top set at around 50 hPa. The
6-hourly 0.25◦ Global Forecast System data were used to provide the initial and lateral
boundary conditions. The simulations were initialized at 0600 UTC, 16 June 2017 for the
three domains and were ended at 1800 UTC, 16 June 2017.

The physical parameterization schemes employed in this study included the Noah
land surface model [28,29] for the land surface processes, the Thompson scheme [30] for the
microphysics, the Mellor–Yamada–Janjic turbulence kinetic energy scheme for the planetary
boundary layer [31], and the Rapid Radiative Transfer Model GCMs for shortwave and
longwave radiation transfer [32]. The Grell–Freitas cumulus parameterization scheme [33]
was activated in domains 1 and 2, and no CPS was activated in domain 3.

Radar reflectivity data were assimilated into model using the cloud analysis and
latent heat nudging method. Radar data were only assimilated in the innermost model
domain. Two-way nesting between parent and inner nests were activated, so the impact of
data assimilation can feedback from the inner-most cloud-allowing domain to its parent
domains. Radar reflectivity data were assimilated during all the simulation time window
with the assimilation cycle of 12 min.

2.3. Quantitative Evaluation Method

To evaluate the lightning parametrization schemes, a neighborhood spatial verification
method called the Fractions Skill Score (FSS) is used in this study, which was initially
developed for fine-scale precipitation forecast verification. The advantage of FSS is that
it can avoid the “double-penalty” problem caused by the small displacement of model
storms compared with observations in space and time which occurs frequently when
simulating convective clouds at fine-scale grid spaces. Since the FSS is more tolerant to
small displacement errors compared to the ETS, it is more appropriate for the evaluation of
the simulation with fine resolution grids. The FSS is computed from Fraction Brier Score
divided by the sum of the mean squared observed and forecast fractions as follow:

FSS = 1 −
1
N ∑N

i=1

(
p f − po

)2

1
N ∑N

i=1

(
p f

)2
+ 1

N ∑N
i=1(po)

2

where N is the number of grid points in the verification domain, p f and po is the fractional
coverage of the studied elementary area by precipitation or lightning flash rates that
exceeds a given threshold value in forecast and observation, respectively. For more details
of the FSS, the reader is invited to consult Roberts and Lean [34].

FSS has been widely used to quantify the performance of precipitation and lightning
forecasts of the convection-allowing NWP models (e.g., Fierro et al. [3]; Wang et al. [5]). In
this study, lightning simulation results, which are accumulated over 12 min, 30 min, 60 min
intervals, are evaluated, respectively.

2.4. Data for Assimilation and Verification

The radar data assimilated in this study are the three-dimensional gridded mosaic
dataset for the southern China region, merged from several individual radars. The radar
datasets are updated every 6 min. Radar data are also used to evaluate the simulation
accuracy of the MCS.

The lightning data used to evaluate the lightning parameterization are from the
lightning detection network in the Guangdong Province of China, which is operated by
Guangdong Meteorological Bureau and the Earth Networks Total Lightning Network
(ENTLN). The lightning detection network includes 16 ground-based sensors deployed
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over the Guangdong Province. The lightning detection network can detect both cloud-to-
ground and intracloud lightning with a detection efficiency of ~77% for total lightning and
a location accuracy of ~600 m [35]. Individual strokes/pulses detected by sensors within
fixed spatiotemporal thresholds are recorded as a lightning flash. When a lightning flash
contains several strokes, the location of the strongest stroke is considered as the location of
the lightning flash. In this study, the total lightning data were interpolated from the original
longitude and latitude to the innermost fine scale 3 km model domain and accumulated
over 12-min, 30 min and 60 min intervals, respectively.

2.5. Radar Reflectivity Data Assimilation

The radar data assimilation method used in this study is the hydrometeor and latent
heat nudging on the basis of cloud analysis. The mosaic reflectivity is interpolated to the
model grids in the innermost 3-km fine resolution domain. The mass mixing ratio of each
type of hydrometeor is retrieved from radar reflectivity using the method similar to that
in Hu and Xue [36]. Then the retrieved hydrometeors and the latent heat release from
the condensation of increased cloud water and cloud ice are nudged into the model. This
radar reflectivity data assimilation method has been shown to be useful to improve the
simulation accuracy of MCS [37]. For details of the radar reflectivity data assimilation, the
reader is invited to consult Huang et al. [37]. Radar reflectivity data were assimilated into
the model during the whole simulation period.

3. Results
3.1. Evaluation of the Simulation Results of the MCS

Since lightning is the by-product of convective clouds, accurate simulation of con-
vective system is a prerequisite for accurate simulation of lightning. Before evaluating
each potential proxy for the diagnosis of lightning flash rates at model-gird scale, the simu-
lation results of the MCS were evaluated with the observed composite radar reflectivity.
Simulated radar reflectivities were evaluated using the FSS method mentioned above. The
neighborhood radius was set to 24 km. Four thresholds of composite radar reflectivity
(30, 35, 40, 45 dBZ) were selected to perform the FSS calculation. Since most lightning
flashes occur in the convective region of the MCS, the simulation accuracy of the convective
region, which usually with the composite radar reflectivity greater than 35 dBZ, is quite
important for the simulation of lightning.

It can be seen in Figure 1, the convective regions show great consistency between the
simulations and the observations in terms of both coverage and placement. The simulation
accuracy of the stratiform regions is slightly worse than that of the convective regions. The
quantitative evaluation results indicate the same results, which the FSSs are greater than
0.75 for convective regions during the simulation period (Figure 2, an FSS value of >0.5
serves as a good indicator of a useful forecast [34,38]).
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Figure 1. Composite radar reflectivity (dBZ) at (a,e) 0800 UTC; (b,f) 1000 UTC; (c,g) 1300 UTC; (d,h) 1400 UTC. (a–d) are 
from the simulations, and (e–h) are from the observations. The 35 dBZ reflectivity contours from the observations are 
shown in the panels of the correspondent simulations (in thick black). The areas out of the radar detection ranges are 
shown as light blue shades. 
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schemes with different proxies employed the linear relationship between the thunder-
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Figure 1. Composite radar reflectivity (dBZ) at (a,e) 0800 UTC; (b,f) 1000 UTC; (c,g) 1300 UTC; (d,h) 1400 UTC. (a–d) are
from the simulations, and (e–h) are from the observations. The 35 dBZ reflectivity contours from the observations are shown
in the panels of the correspondent simulations (in thick black). The areas out of the radar detection ranges are shown as
light blue shades.
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3.2. Proxies for Diagnosis of Gridded Total Lightning Flash Rates

Previous studies have found that total lightning frequency is related to graupel content
(associated increase in radar reflectivity), updraft characteristics. Such correlations are
due to the primary role of the noninductive electrification mechanism in thunderstorm
charging (i.e., rebound collisions between graupel and ice with the existence of supercooled
liquid water), which has been indicated in many previous studies. The potential proxies
for the diagnosis of gridded total lightning flash rates, which were evaluated in this study,
include graupel volume (GV), precipitation ice mass (PIM), radar echo volume (REV),
maximum updraft (Wmax), updraft volume (UV). All the five lightning diagnostic schemes
with different proxies employed the linear relationship between the thunderstorm proxies
and lightning flash rates (Table 1).
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Table 1. Summary of lightning diagnostic schemes with different proxies.

Parameter (Units) Equation
Parameter and Threshold

Used to Compute the
Corresponding Volume

Filter Parameter and
Threshold Linear Coefficient (k)

Graupel volume (km3) f = k·GV qg (0.5 g·kg−1) / 0.447934

Precipitation ice mass (kg) f = k·PIM /
Column-maximum qg

(0.6 g·kg−1)
0.256011

Radar echo volume (km3) f = k·REV Reflectivity (44 dBZ) / 0.213345

Maximum updraft (m·s−1) f = k·Wmax / Maximum updraft
(3 m·s−1) 0.055901

Updraft volume (km3) f = k·UV Updraft (3 m·s−1) / 0.175862

3.3. Optimal Coefficients for Each Lightning Diagnostic Scheme with Different Proxies

In this study, optimal coefficients for each lightning diagnostic scheme were calibrated
in term of lightning areal extents and grid cell lightning flash rates on the basis of the
lightning observations. The linear coefficient (k) was determined by the averaged grid
lightning flash rates in the simulations and observations. The averaged grid lightning flash
rates were computed by dividing the total number of lightning flashes of the whole domain
by the total number of grid points where lightning occurred. The linear coefficient was
then scaled by dividing the averaged grid lightning flash rates in the observations by those
in simulations.

For GV, REV and UV, the optimal thresholds used to compute the corresponding
volume (e.g., a grid point with a graupel mixing ratio greater than a certain threshold will
be counted to compute GV) were obtained with an iterative process, which used the FSS of
lightning simulation as the judgement condition, and the lightning flash rate threshold for
FSS computation was set to 1 flash 9 km−2 herein. When the lighting flash rate threshold
for FSS computation was set to 1 flash 9 km−2 (the lightning flash rates in the simulations
and observations will be converted to a binary grid of lightning occurrence using the
threshold 1 flash 9 km−2), the results indicate the simulation accuracy of lightning areal
extents. The threshold used to compute the corresponding volume was gradually increased
during the iteration process, and the threshold with the highest FSS will be selected as the
final threshold (Figure 3a,c,e). For each proxy, the optimal thresholds used to compute
the corresponding volume were almost the same for different lightning accumulated time
intervals, and the optimal thresholds for 60 min accumulated time interval was selected as
the final thresholds. The linear coefficient of each lightning diagnostic scheme was then
recalibrated to account for the variation of the thresholds.

For PIM and Wmax, a filter parameter was added to the lightning diagnostic schemes
to control the areal extents of the simulated lightning. The optimal threshold of filter
parameter was obtained with an iterative process same as the method mentioned above.
Column-maximum graupel mixing ratio (qg) and maximum updraft were used as the filter
parameters for PIM and Wmax, respectively. The lightning flash rates of the grid with a
column-maximum qg or maximum updraft less than the corresponding threshold will be
set to 0 for PIM and Wmax, respectively, and the FSSs for different thresholds are shown
in Figure 3b,d. The parameters used for each lightning diagnostic scheme with different
proxies can be found in Table 1.
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the different filter thresholds for lightning diagnostic scheme using the proxy of (b) PIM and (d) Wmax. The abbreviations of
each proxy are defined in Section 3.2.

Figures 4 and 5 show the simulated and observed lightning flash rates accumulated
over two 12 min and 60 min periods, respectively. All the five lightning diagnostic schemes
reproduced the general structure of the observed lightning spatial coverage. The updrafts
related schemes (Wmax and UV) tended to simulate wider areal extents of lightning com-
pared to the graupel related schemes (GV and PIM). FSS statistics (Figure 3) indicate that
the lightning simulations with longer time interval (e.g., 60 min) achieved higher FSS
values compared to the lightning simulations with shorter time interval (e.g., 12 min).
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Figure 5. As in Figure 4, but accumulated over two 60 min periods. (a1,b1) are from the observations, and (a2–a6), (b2–b6)
are from the different lightning diagnostic schemes with different proxies. The abbreviations of each lightning diagnostic
scheme are labeled in each panel.

Since these five storm parameters are physically related (e.g., graupel volume are
related to maximum updrafts), it is not surprised that there will not be much difference
between the FSSs of these proxies. However, there was still a difference between the FSSs
of these proxies. It can be seen in Figure 6, the FSS for different proxies ranged from 0.70 to
0.73 for the thresholds of 1 flash 9 km−2 h−1, ranged from 0.54 to 0.59 for the thresholds
of 5 flash 9 km−2 h−1, ranged from 0.46 to 0.52 for the thresholds of 10 flash 9 km−2 h−1,
ranged from 0.33 to 0.45 for the thresholds of 15 flash 9 km−2 h−1 and ranged from 0.23 to
0.39 for the thresholds of 20 flash 9 km−2 h−1, respectively.
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By comparing the FSS statistics for different lightning flash rate thresholds (Figure 6),
it can be found that the FSS values were decreasing as lightning flash rate thresholds
increased for all the lightning diagnostic schemes with different proxies. FSS statistics with
a threshold of 1 flash 9 km−2 h−1 suggest lightning diagnostic schemes are useful to indicate
general tendencies for the occurrence, region, and time of lightning flash (FSS statistics
for the threshold of 1 flash 9 km−2 h−1 were around 0.7 for each scheme). As mentioned
in [34,38,39], a FSS value of >0.5 serves as a good indicator of a useful forecast when the
probability that a particular grid point has an event (e.g., precipitation or lightning) is
small (the probabilities are less than 0.0336, 0.0213, 0.0136 for 60-min, 30-min, and 12-min
accumulated lightning flash rates, respectively, in the observations and simulations of this
study). For thresholds from 1 to 3 and 16 to 20 flashes per 9 km2 per hour, the graupel
contents related schemes (GV and PIM) achieved slightly higher FSS values compared
with the other three schemes. For thresholds from 5 to 15 flashes per 9 km per hour the
updraft volume related scheme (UV) yielded the largest FSS. For the threshold greater than
13 flashes per 9 km2 per hour, the FSS values were below 0.5 for all the lightning diagnostic
schemes.

4. Conclusions

The potential of five storm parameters to be used as the proxy for the diagnosis of
gridded total lightning flash rates has been investigated in a convection-allowing model.
A complicated MCS occurred in Guangdong province of China was selected as the test case.
Since the occurrence and location of lightning is sensitive to the characteristics of convective
clouds, accurate simulation of convective clouds is a prerequisite for accurate simulation
of lightning. In this study, radar data assimilation was used to improve the simulation
accuracy of the convective clouds, hence providing strong instantaneous correlations
between observed and simulated storm signatures. It has been shown that, by assimilating
radar data, the WRF model reproduces the main features of the selected convective system
well.

Five different microphysical and dynamical model parameters have been tested as
the proxies for diagnosing gridded lightning flash rates. The optimal coefficients for each
potential proxy were calibrated in term of lighting spatial coverages and grid cell lightning
flash rates on the basis of the observed lightning flash rates and the simulated lightning
flash rates. Subjective and quantitative evaluations suggest that all the five proxies (GV,
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PIC, REV, Wmax, UV) tested in this study are useful to indicate general tendencies for the
occurrence, region, and time of lightning flash at convection-allowing scale (FSS statistics
for the threshold of 1 flash 9 km−2 h−1 were around 0.7 for each scheme).

The FSS values were decreasing as the lightning flash rate thresholds used for FSS
computation increased for all the lightning diagnostic schemes with different proxies. For
thresholds from 1 to 3 and 16 to 20 flashes per 9 km2 per hour, the graupel contents related
schemes (GV and PIM) achieved higher FSS values compared with the other three schemes.
For thresholds from 5 to 15 flashes per 9 km2 per hour the updraft volume related scheme
(UV) yielded the largest FSS. When the thresholds of lightning flash rates were greater than
13 flashes per 9 km2 per hour, the FSS values were below 0.5 for all the lightning diagnostic
schemes with different proxies.
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