Compound Temperature and Precipitation Events in the Czech Republic: Differences of Stratiform versus Convective Precipitation in Station and Reanalysis Data
Abstract
:1. Introduction
2. Data and Methods
2.1. Observed Data and Reanalysis
2.2. Compound Events
2.3. Large-Scale Atmospheric Circulation
3. Results
3.1. Basic Characteristics of Precipitation and Temperature
3.2. Frequency of Compound Events
3.3. Atmospheric Circulation Associated with Compound Events
4. Discussion and Conclusions
- Notable stratiform precipitation most frequently coincides with warm nights and warm days in winter (47 and 41 days, respectively, over the examined period) and in the other seasons with cold days. In summer, almost a quarter of all cold days are connected with notable stratiform precipitation.
- Compound events with notable convective precipitation occur most frequently in summer and are linked mainly to warm days and warm nights (36 and 20 days, respectively).
- Cold nights coinciding with either stratiform or convective notable precipitation are rare throughout the year.
- Although ERA-Interim overestimates the number of days with stratiform compound events, the results obtained from its data are qualitatively comparable with those from the station data.
- ERA-Interim is not able to reproduce convective compound events such as those obtained from the station data. In ERA-Interim, the most frequently occurring compound events of convective precipitation are combined with cold days.
- Notable winter stratiform precipitation coinciding with warm days and warm nights is connected with A, SW, NW, and ANW circulation types. The most crucial circulation type for notable stratiform precipitation coinciding with cold days is the NE type in all seasons except winter.
- Finally, notable convective precipitation coinciding with warm days in summer is associated with A, C, and NW types.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bevacqua, E.; Maraun, D.; Hobæk Haff, I.; Widmann, M.; Vrac, M. Multivariate statistical modelling of compound events via pair-copula constructions: Analysis of floods in Ravenna (Italy). Hydrol. Earth Syst. Sci. 2017, 21, 2701–2723. [Google Scholar] [CrossRef] [Green Version]
- Plavcová, E.; Urban, A. Intensified Impacts on Mortality Due to Compound Winter Extremes in the Czech Republic. Sci. Total Environ. 2020, 746, 141033. [Google Scholar] [CrossRef] [PubMed]
- Sedlmeier, K.; Feldmann, H.; Schädler, G. Compound summer temperature and precipitation extremes over central Europe. Theor. Appl. Climatol. 2018, 131, 1493–1501. [Google Scholar] [CrossRef]
- Martius, O.; Pfahl, S.; Chevalier, C. A global quantification of compound precipitation and wind extremes. Geophys. Res. Lett. 2016, 43, 7709–7717. [Google Scholar] [CrossRef] [Green Version]
- Hao, Z.; Singh, V.P.; Hao, F. Compound Extremes in Hydroclimatology: A Review. Water 2018, 10, 718. [Google Scholar] [CrossRef] [Green Version]
- Zscheischler, J.; Westra, S.; van den Hurk, B.J.J.M.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; AghaKouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future climate risk from compound events. Nat. Clim. Chang. 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Tencer, B.; Bettolli, M.L.; Rusticucci, M. Compound temperature and precipitation extreme events in southern South America: Associated atmospheric circulation, and simulations by a multi-RCM ensemble. Clim. Res. 2016, 68, 183–199. [Google Scholar]
- Assani, A.A.; Guerfi, N. Analysis of the Joint Link between Extreme Temperatures, Precipitation and Climate Indices in Winter in the Three Hydroclimate Regions of Southern Quebec. Atmosphere 2017, 8, 75. [Google Scholar]
- Eisenberg, D.; Warner, K.E. Effects of snowfalls on motor vehicle collisions, injuries, and fatalities. Am. J. Public Health 2005, 95, 120–124. [Google Scholar] [CrossRef]
- Akstinas, V.; Meilutyte-Lukauskiene, D.; Kriauciuniene, J.; Šarauskiene, D. Features and causes of catastrophic floods in the Nemunas River basin. Hydrol. Res. 2020, 51, 308–321. [Google Scholar] [CrossRef]
- Te Beest, D.E.; Paveley, N.D.; Shaw, M.W.; van den Bosch, F. Disease–weather relationships for powdery mildew and yellow rust on winter wheat. Phytopathology 2008, 98, 609–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beniston, M. Trends in joint quantiles of temperature and precipitation in Europe since 1901 and projected for 2100. Geophys. Res. Lett. 2009, 36, L07707. [Google Scholar] [CrossRef] [Green Version]
- Arsenović, P.; Tošić, I.; Unkašević, M. Trends in combined climate indices in Serbia from 1961 to 2010. Meteorol. Atmos. Phys. 2015, 127, 489–498. [Google Scholar] [CrossRef]
- Tencer, B.; Weaver, A.; Zwiers, F. Joint Occurrence of daily temperature and precipitation extreme events over Canada. J. Appl. Meteorol. Clim. 2014, 53, 2148–2162. [Google Scholar] [CrossRef]
- Berg, P.; Moseley, C.; Haerter, J.O. Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci. 2013, 6, 181–185. [Google Scholar] [CrossRef]
- Fischer, A.M.; Keller, D.E.; Liniger, M.A.; Rajczak, J.; Schӓr, C.; Appenzeller, C. Projected changes in precipitation intensity and frequency in Switzerland: A multi-model perspective. Int. J. Climatol. 2015, 35, 3204–3219. [Google Scholar] [CrossRef]
- Rulfová, Z.; Beranová, R.; Kyselý, J. Climate change scenarios of convective and large-scale precipitation in the Czech Republic based on EURO-CORDEX data. Int. J. Climatol. 2017, 37, 2451–2465. [Google Scholar] [CrossRef]
- Harpa, G.-V.; Croitoru, A.-E.; Djurdjevic, V.; Horvath, C. Future changes in five extreme precipitation indices in the lowlands of Romania. Int. J. Climatol. 2019, 39, 5720–5740. [Google Scholar] [CrossRef]
- Andrade, C.; Leite, S.M.; Santos, J.A. Temperature extremes in Europe: Overview of their driving atmospheric patterns. Nat. Hazards Earth Syst. Sci. 2012, 12, 1671–1691. [Google Scholar] [CrossRef] [Green Version]
- Horton, D.E.; Johnson, N.C.; Singh, D.; Swain, D.L.; Rajaratnam, B.; Diffenbaugh, N.S. Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature 2015, 522, 465–469. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Yao, Y.; Luo, D.; Zhong, L. The Linkage of the Large-Scale Circulation Pattern to a Long-Lived Heatwave over Mideastern China in 2018. Atmosphere 2019, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- Blenkinsop, S.; Chan, S.C.; Kendon, E.J.; Roberts, N.M.; Fowler, H.J. Temperature influences on intense UK hourly precipitation and dependency on large-scale circulation. Environ. Res. Lett. 2015, 10, 054021. [Google Scholar] [CrossRef] [Green Version]
- Cioffi, F.; Lall, U.; Rus, E.; Krishnamurthy, C.K.B. Space-time structure of extreme precipitation in Europe over the last century. Int. J. Climatol. 2015, 35, 1749–1760. [Google Scholar] [CrossRef] [Green Version]
- Rulfová, Z.; Kyselý, J. Disaggregating convective and stratiform precipitation from station weather data. Atmos. Res. 2013, 134, 100–115. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, D.P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. Roy. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar]
- Lovino, M.A.; Müller, O.V.; Berbery, E.H.; Müller, G.V. How have daily climate extremes changed in the recent past over northeastern Argentina? Glob. Planet. Chang. 2018, 168, 78–97. [Google Scholar] [CrossRef]
- Jenkinson, A.F.; Collison, F.P. An initial climatology of gales over the North Sea. Synop. Climatol. Branch. Memorandum. 1977, 1–62. [Google Scholar]
- Plavcová, E.; Kyselý, J. Evaluation of daily temperatures in Central Europe and their links to large-scale circulation in an ensemble of regional climate models. Tellus 2011, 63, 763–781. [Google Scholar] [CrossRef] [Green Version]
- Gevorgyan, A. Verification of daily precipitation amount forecasts in Armenia by ERA-Interim model. Int. J. Climatol. 2013, 33, 2706–2712. [Google Scholar] [CrossRef]
- Warrach-Sagi, K.; Schwitalla, T.; Wulfmeyer, V.; Bauer, H.-S. Evaluation of a climate simulation in Europe based on the WRF–NOAH model system: Precipitation in Germany. Clim. Dynam. 2013, 41, 755–774. [Google Scholar] [CrossRef] [Green Version]
- Odon, P.; West, G.; Stull, R. Evaluation of Reanalyses over British Columbia. Part I: Daily and Extreme 2-m Temperature. J. Appl. Meteorol. Clim. 2018, 57, 2091–2111. [Google Scholar] [CrossRef]
- Tiedtke, M. A comprehensive mass flux scheme for cumulus parametrization in large-scale models. Mon. Weather Rev. 1989, 117, 1779–1800. [Google Scholar] [CrossRef] [Green Version]
- Bechtold, P.; Chaboureau, J.-P.; Beliaars, A.; Betts, A.K.; Köhler, M.; Miller, M.; Redelsperger, J.-L. The simulation of the diurnal cycle of convective precipitation over land in a global model. Q. J. Roy. Meteor. Soc. 2004, 130, 3119–3137. [Google Scholar] [CrossRef] [Green Version]
WMO Code | Station Name | Longitude [°E] | Latitude [°N] | Altitude [m a.s.l.] |
---|---|---|---|---|
11723 | Brno-Tuřany | 16.70 | 49.16 | 241 |
11782 | Ostrava-Mošnov | 18.12 | 49.69 | 251 |
11698 | Kuchařovice | 16.09 | 48.88 | 334 |
11518 | Praha-Ruzyně | 14.26 | 50.10 | 364 |
11603 | Liberec | 15.03 | 50.77 | 398 |
11406 | Cheb | 12.39 | 50.07 | 471 |
11636 | Kostelní Myslová | 15.44 | 49.16 | 569 |
11414 | Karlovy Vary | 12.91 | 50.20 | 603 |
11683 | Svratouch | 16.03 | 49.74 | 737 |
11457 | Churáňov | 13.61 | 49.07 | 1118 |
11787 | Lysá hora | 18.45 | 49.55 | 1322 |
Temperature Extremes | Threshold | January [°C] | April [°C] | July [°C] | October [°C] |
---|---|---|---|---|---|
Warm days (Tx90) | Tx > 90th percentile | 6.4 | 18.2 | 28.4 | 17.3 |
Warm nights (Tn90) | Tn > 90th percentile | 1.1 | 7.4 | 16.4 | 9.5 |
Cold days (Tx10) | Tx < 10th percentile | −6.1 | 4.9 | 16.0 | 5.9 |
Cold nights (Tn10) | Tn < 10th percentile | −12.0 | −1.9 | 8.5 | −0.4 |
DIR | Straight Types |VORT| < STR | Hybrid Types STR ≤ |VORT| < 2 × STR | |
---|---|---|---|
VORT > 0 | VORT < 0 | ||
0–90° | northeast (NE) | cyclonic northeast (CNE) | anticyclonic northeast (ANE) |
90–180° | southeast (SE) | cyclonic southeast (CSE) | anticyclonic southeast (ASE) |
180–270° | southwest (SW) | cyclonic southwest (CSW) | anticyclonic southwest (ASW) |
270–360° | northwest (NW) | cyclonic northwest (CNW) | anticyclonic northwest (ANW) |
STR < 4 and |VORT| < 4 | |VORT| ≥ 2 × STR | ||
unclassified (U) | cyclonic (C) | anticyclonic (A) |
Convective | Tx90 | Tn90 | Tx10 | Tn10 | ||||
---|---|---|---|---|---|---|---|---|
OBS | ERA | OBS | ERA | OBS | ERA | OBS | ERA | |
DJF | 17 (5.4) | 57 (17.8) | 15 (5.0) | 58 (18.2) | 2 (0.5) | 5 (1.4) | 2 (0.5) | 3 (1.0) |
2–36 | 38–74 | 3–35 | 42–75 | 0–6 | 2–7 | 0–5 | 0–7 | |
MAM | 19 (5.9) | 21 (6.5) | 20 (6.2) | 54 (16.5) | 10 (3.1) | 53 (16.2) | 12 (3.6) | 29 (8.8) |
10–23 | 9–31 | 6–32 | 41–78 | 1–24 | 34–65 | 4–30 | 19–39 | |
JJA | 36 (11.2) | 32 (9.7) | 20 (6.5) | 36 (11.1) | 16 (5.0) | 70 (21.6) | 13 (4.0) | 32 (9.8) |
24–51 | 16–45 | 7–40 | 20–57 | 5–26 | 60–87 | 3–25 | 20–52 | |
SON | 12 (3.6) | 36 (11.1) | 12 (3.7) | 60 (18.8) | 13 (4.0) | 52 (16.3) | 8 (2.7) | 17 (5.1) |
4–25 | 27–48 | 3–27 | 44–74 | 2–22 | 34–67 | 1–21 | 9–26 | |
Stratiform | Tx90 | Tn90 | Tx10 | Tn10 | ||||
OBS | ERA | OBS | ERA | OBS | ERA | OBS | ERA | |
DJF | 41 (12.9) | 70 (22.0) | 47 (15.1) | 80 (25.1) | 21 (6.8) | 26 (8.1) | 16 (5.1) | 15 (4.8) |
8–73 | 35–106 | 23–74 | 49–114 | 9–44 | 15–39 | 7–50 | 11–27 | |
MAM | 9 (2.7) | 13 (3.9) | 18 (5.5) | 34 (10.4) | 59 (18.2) | 73 (22.2) | 25 (7.8) | 28 (8.7) |
5–14 | 4–24 | 4–30 | 21–49 | 37–86 | 58–89 | 7–73 | 18–41 | |
JJA | 8 (2.5) | 17 (5.0) | 5 (1.7) | 11 (3.5) | 76 (23.6) | 101 (31.1) | 27 (8.4) | 39 (11.8) |
1–13 | 6–26 | 0–19 | 0–25 | 58–103 | 80–133 | 10–65 | 24–57 | |
SON | 14 (4.5) | 25 (7.9) | 19 (6.0) | 39 (12.1) | 49 (15.5) | 68 (21.0) | 20 (6.4) | 22 (6.8) |
6–18 | 17–33 | 2–35 | 21–56 | 31–67 | 52–87 | 4–65 | 11–39 | |
Total | Tx90 | Tn90 | Tx10 | Tn10 | ||||
OBS | ERA | OBS | ERA | OBS | ERA | OBS | ERA | |
DJF | 48 (15.1) | 81 (25.5) | 53 (17.1) | 90 (28.0) | 21 (6.7) | 22 (7.0) | 16 (5.2) | 13 (4.1) |
9–84 | 49–115 | 26–79 | 62–120 | 7–46 | 14–37 | 7–52 | 5–26 | |
MAM | 21 (6.4) | 19 (5.9) | 30 (9.2) | 55 (16.8) | 58 (17.9) | 81 (24.6) | 28 (8.8) | 32 (9.8) |
12–25 | 8–30 | 7–51 | 42–71 | 34–97 | 68–100 | 10–79 | 20–53 | |
JJA | 35 (10.9) | 28 (8.6) | 21 (6.7) | 29 (8.9) | 71 (22.0) | 101 (31.1) | 29 (9.3) | 41 (12.5) |
25–47 | 12–41 | 4–52 | 12–51 | 55–98 | 87–127 | 15–68 | 25–59 | |
SON | 20 (6.3) | 35 (10.9) | 25 (7.8) | 60 (18.7) | 52 (16.2) | 80 (24.7) | 24 (7.5) | 25 (7.6) |
8–29 | 25–46 | 3–44 | 38–75 | 35–73 | 61–97 | 7–73 | 15–41 |
Extreme Season Counts | Cirk. %CE (Rc) Types | Extreme Season Counts | Cirk. %CE (Rc) Types | Extreme Season Counts | Cirk. %CE (Rc) Types | |
---|---|---|---|---|---|---|
Convective | Tx90 | A 37.3 (1.1) | Tn90 | C 21.4 (1.7) | Tn90 | A 29.3 (0.8) |
JJA | C 11.4 (1.6) | MAM | A 17.1 (0.7) | JJA | C 12.9 (1.8) | |
193 days | NW 9.3 (1.2) | 140 days | NW 12.1 (1.4) | 140 days | NE 12.9 (1.6) | |
Stratiform | Tx90 DJF 185 days | NW 23.8 (2.2) | Tn90 DJF 220 days | A 20.5 (0.7) | ||
SW 20.5 (1.3) A 17.8 (0.6) | NW 20.0 (1.9) SW 17.3 (1.1) | |||||
ANW 15.7 (2.1) | ANW 16.4 (2.2) | |||||
Tx10 MAM 280 days | A 28.2 (1.2) | Tx10 JJA 338 days | A 33.1 (0.9) | Tx10 SON 228 days | A 24.1 (0.8) | |
C 14.3 (1.1) | NW 13.6 (1.7) | NW 14.5 (1.7) | ||||
NE 12.5 (1.4) | NE 12.4 (1.6) | C 11.8 (1.5) NE 10.5 (2.7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rulfová, Z.; Beranová, R.; Plavcová, E. Compound Temperature and Precipitation Events in the Czech Republic: Differences of Stratiform versus Convective Precipitation in Station and Reanalysis Data. Atmosphere 2021, 12, 87. https://doi.org/10.3390/atmos12010087
Rulfová Z, Beranová R, Plavcová E. Compound Temperature and Precipitation Events in the Czech Republic: Differences of Stratiform versus Convective Precipitation in Station and Reanalysis Data. Atmosphere. 2021; 12(1):87. https://doi.org/10.3390/atmos12010087
Chicago/Turabian StyleRulfová, Zuzana, Romana Beranová, and Eva Plavcová. 2021. "Compound Temperature and Precipitation Events in the Czech Republic: Differences of Stratiform versus Convective Precipitation in Station and Reanalysis Data" Atmosphere 12, no. 1: 87. https://doi.org/10.3390/atmos12010087
APA StyleRulfová, Z., Beranová, R., & Plavcová, E. (2021). Compound Temperature and Precipitation Events in the Czech Republic: Differences of Stratiform versus Convective Precipitation in Station and Reanalysis Data. Atmosphere, 12(1), 87. https://doi.org/10.3390/atmos12010087