Association between Prevailing Circulation Patterns and Coarse Particles in Portugal
Abstract
:1. Introduction
2. Data and Methods
2.1. Air Quality Data
2.2. Circulation-to-Environment Approach
2.3. Extreme Events
3. Results
3.1. Air Quality Characterization
3.2. CWT Characterization
3.3. Association between CWT and Air Quality
3.4. Extreme PM Events
3.4.1. October 2017 Megafires
3.4.2. August 2018 Heatwave and Fires
4. Discussion
5. Conclusions
- -
- Average annual PM concentrations show a reduction tendency over the last decade.
- -
- PM values show a clear intra-annual cycle, with higher values during wintertime for most regions.
- -
- The predominant CWTs in Portugal (i.e., anticyclonic and northerly regimes) are not related to significant PM episodes, as the highest concentrations of PM tend to be restricted to a smaller set of circulation configurations (NE, E, SE, S).
- -
- This work highlights the importance of certain CWTs on the setting and dispersion of pollution events, which have an impact on both PM10 and PM2.5. Namely, for the two analyzed extreme events, associated with mega wildfires (15–17 October, 2017) and dust intrusion (1–10 August, 2018), they both show prevailing southerly and easterly circulations during the onset and peak of the events.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. 2007: Climate Change. In The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment, Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; 996p. [Google Scholar]
- Organisation for Economic Co-operation and Development (OECD). OCDE Environmental Outlook to 2050: The Consequences of Inaction (2012); OECD Publishing: Paris, French, 2012; p. 350. [Google Scholar] [CrossRef]
- EEA—European Environment Agency. Every Breath We Take: Improving Air Quality in Europe, EEA Signals 2013 Report; Publications Office of the European Union: Luxembourg, 2013; ISBN 978-92-9213-363-4. [Google Scholar] [CrossRef]
- Colais, P.; Faustini, A.; Stafoggia, M.; Berti, G.; Bisanti, L.; Cadum, E.; Cernigliaro, A.; Mallone, S.; Pacelli, B.; Serinelli, M.; et al. Particulate Air Pollution and Hospital Admissions for Cardiac Diseases in Potentially Sensitive Subgroups. Epidemiology 2012, 23, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Lanzinger, S.; Schneider, A.; Breitner, S.; Stafoggia, M.; Erzen, I.; Dostal, M.; Peters, A. Associations between ultrafine and fine particles and mortality in five central European cities—Results from the UFIREG study. Environ. Int. 2016, 88, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Cournane, S.; Conway, R.; Byrne, D.; O’Riordan, D.; Coveney, S.; Silke, B. High Risk Subgroups Sensitive to Air Pollution Levels Following an Emergency Medical Admission. Toxics 2017, 5, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). Health, Environment and Climate Change: Report by the Director-General. World Health Assembly, 71; World Health Organization: Geneva, Switzerland, 2018; Available online: https://apps.who.int/iris/handle/10665/276332 (accessed on 25 October 2020).
- European Environment Agency. 2017, “Air Quality in Europe—2017 Report”; EEA Technical Report No13/2017; Publications Office of the European Union: Luxembourg, 2017; ISBN 978-92-9213-921-6. ISSN 1977-8449. [Google Scholar] [CrossRef]
- Pérez, L.; Tobías, A.; Querol, X.; Pey, J.; Alastuey, A.; Díaz, J.; Sunyer, J. Saharan dust, particulate matter and cause specific mortality: A case-crossover study in Barcelona (Spain). Environ. Int. 2012, 48, 150–155. [Google Scholar] [CrossRef]
- Reyes, M.; Díaz, J.; Tobías, A.; Montero, J.C.; Linares, C. Impact of Saharan dust particles on hospital admissions in Madrid. Int. J. Environ. Health Res. 2014, 24, 63–72. [Google Scholar] [CrossRef]
- Stafoggia, M.; Samoli, E.; Alessandrini, E.; Cadum, E.; Ostro, B.; Berti, G.; Faustini, A.; Jacquemin, B.; Linares, C.; Pascal, M.; et al. Short-term associations between fine and coarse particulate matter and hospitalizations in southern Europe: Results from the MED-PARTICLES project. Environ. Health Perspect. 2013, 121, 1026–1033. [Google Scholar] [CrossRef]
- Stafoggia, M.; Cesaroni, G.; Peters, A.; Andersen, Z.J.; Badaloni, C.; Beelen, R.; Caracciolo, B.; Cyrys, J.; de Faire, U.; de Hoogh, K.; et al. Long-term exposure to ambient air pollution and incidence of cerebrovascular events: Results from 11 European cohorts within the escape project. Environ. Health Perspect. 2014, 122, 919–925. [Google Scholar] [CrossRef] [Green Version]
- Stafoggia, M.; Zauli-Sajani, S.; Pey, J.; Samoli, E.; Alessandrini, E.; Basagaña, X.; Cernigliaro, A.; Chiusolo, M.; Demaria, M.; Díaz, J.; et al. MED-PARTICLES Study Group. Desert dust outbreaks in Southern Europe: Contribution to daily PM10 concentrations and short-term associations with mortality and hospital admissions. Environ. Health Perspect. 2016, 124, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Díaz, J.; Linares, C.; Carmona, R.; Russo, A.; Ortiz, C.; Salvador, P.; Trigo, R.M. Saharan dust intrusions in Spain: Health impacts and associated synoptic conditions. Environ. Res. 2017, 156, 455–467. [Google Scholar] [CrossRef]
- European Environment Agency. 2019, “Air Quality in Europe—2019 Report”; EEA Technical Report No10/2019; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-9480-088-6. ISSN 1977-8449. [Google Scholar] [CrossRef]
- Gupta, P.; Christopher, S.A.; Wang, J.; Gehrig, R.; Lee, Y.C.; Kumar, N. Satellite remote sensing of particulate matter and air quality over global cities. Atmos. Environ. 2006, 40, 5880–5892. [Google Scholar] [CrossRef]
- Yang, Q.; Yuan, Q.; Yue, L.; Li, T. Investigation of the spatially varying relationships of PM2.5 with meteorology, topography, and emissions over China in 2015 by using modified geographically weighted regression. Environ. Pollut. 2020, 262, 114257. [Google Scholar] [CrossRef] [PubMed]
- Demuzere, M.; Trigo, R.M.; Vila-Guerau de Arellano, J.; van Lipzig, N.P.M. The impact of weather and atmospheric circulation on O3 and PM10 levels at a rural mid-latitude site. Atmos. Chem. Phys. 2009, 9, 2695–2714. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.L.; Beringer, J.; Nicholls, N.; Hyndman, R.J.; Uotila, P.; Tapper, N.J. Investigating the influence of synoptic-scale meteorology on air quality using self-organizing maps and generalized additive modelling. Atmos. Environ. 2011, 45, 128–136. [Google Scholar] [CrossRef]
- Russo, A.; Gouveia, C.M.; Levy, I.; Dayan, U.; Jerez, S.; Mendes, M.A.; Trigo, R.M. Coastal recirculation potential affecting air pollutants in Portugal: The role of circulation weather types. Atmos. Environ. 2016, 135, 9–19. [Google Scholar] [CrossRef]
- Hooyberghs, J.; Mensink, C.; Dumont, G.; Fierens, F.; Brasseur, O. A neural network forecast for daily average PM10 concentrations in Belgium. Atmos. Environ. 2005, 39, 3279–3289. [Google Scholar] [CrossRef]
- Dayan, U.; Levy, I. Relationship between synoptic-scale atmospheric circulation and ozone concentrations over Israel. J. Geophys. Res. 2002, 107, 4813. [Google Scholar] [CrossRef]
- Russo, A.; Trigo, R.M.; Martins, H.; Mendes, M.T. NO2, PM10 and O3 urban concentrations and its association with circulation weather types in Portugal. Atmos. Environ. 2014, 89, 768–785. [Google Scholar] [CrossRef]
- Russo, A.; Sousa, P.M.; Durão RMRamos, A.M.; Salvador, P.; Linares, C.; Diaz, J.; Trigo, R.M. Saharan dust intrusions in the Iberian Peninsula: Predominant synoptic conditions. Sci. Total Environ. 2020, 717, 137041. [Google Scholar] [CrossRef]
- Carvalho, A.; Monteiro, A.; Ribeiro, I.; Tchepel, O.; Miranda, A.I.; Borrego, C.; Saavedra, S.; Souto, J.A.; Casares, J.J. High ozone levels in the northeast of Portugal: Analysis and characterization. Atmos. Environ. 2010, 44, 1020–1031. [Google Scholar] [CrossRef]
- Saavedra, S.; Rodríguez, A.; Taboada, J.J.; Souto, J.A.; Casares, J.J. Synoptic patterns and air mass transport during ozone episodes in northwestern Iberia. Sci. Total Environ. 2012, 441, 97–110. [Google Scholar] [CrossRef]
- Moulin, C.; Chiapello, I. Impact of human-induced desertification on the intensification of Sahel dust emission and export over the last decades, Geophys. Res. Lett. 2006, 33, L18808. [Google Scholar] [CrossRef]
- Turco, M.; Jerez, S.; Augusto, S.; Tarín-Carrasco, P.; Ratola, N.; Jimenez-Guerrero, P.; Trigo, R.M. Climate drivers of the 2017 devastating fires in Portugal. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef]
- Calheiros, T.; Nunes, J.P.; Pereira, M.G. Recent evolution of spatial and temporal patterns of burnt areas and fire weather risk in the Iberian Peninsula. Agric. For. Meteorol. 2020, 287, 107923. [Google Scholar] [CrossRef]
- Liu, J.C.; Wilson, A.; Mickley, L.J.; Dominici, F.; Ebisu, K.; Wang, Y.; Sulprizio, M.P.; Peng, R.D.; Yue, X.; Son, J.Y.; et al. Wildfire-specific Fine Particulate Matter and Risk of Hospital Admissions in Urban and Rural Counties. Epidemiology (Cambridge, Mass.) 2017, 28, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.C.; Mickley, L.J.; Sulprizio, M.P.; Yue, X.; Peng, R.D.; Dominici, F.; Bell, M.L. Future respiratory hospital admissions from wildfire smoke under climate change in the Western US. Environ. Res. Lett. 2016, 11, 124018. [Google Scholar] [CrossRef]
- Turco, M.; Rosa-Cánovas, J.J.; Bedia JJerez, S.; Montávez, J.P.; Llasat, M.C.; Provenzale, A. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 2018, 9, 3821. [Google Scholar] [CrossRef]
- Ruffault, J.; Curt, T.; Moron, V.; Trigo, R.M.; Mouillot, F.; Koutsias, N.; Pimont, F.; Martin-StPaul, N.; Barbero, R.; Dupuy, J.-L.; et al. Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Sci. Rep. 2020, 10, 13790. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Chiang, F.; Huning, L.S.; Love, C.A.; Mallakpour, I.; Mazdiyasni, O.; Moftakhari, H.; Papalexiou, S.M.; Ragno, E.; Sadegh, M. Climate Extremes and Compound Hazards in a Warming World. Annu. Rev. Earth Planet. Sci. 2020, 48, 1. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P.M.; Barros, A.M.G.; Pinto, A.; Santos, J.A. Characteristics and controls of extremely large wildfires in the western Mediterranean Basin. J. Geophys. Res.-Biogeo. 2016, 121, 2141–2157. [Google Scholar] [CrossRef]
- Augusto, S.; Ratola, N.; Tarín-Carrasco, P.; Jiménez-Guerrero, P.; Turco, M.; Schuhmacher, M.; Costa, S.; Teixeira, J.P.; Costa, C. Population exposure to particulate-matter and related mortality due to the Portuguese wildfires in October 2017 driven by storm Ophelia. Environ. Int. 2020, 144, 106056. [Google Scholar] [CrossRef]
- Adame, J.; Lope, L.; Hidalgo, P.; Sorribas, M.; Gutiérrez-Álvarez, I.; Del Águila, A.; Saiz-Lopez, A.; Yela, M. Study of the exceptional meteorological conditions, trace gases and particulate matter measured during the 2017 forest fire in Doñana Natural Park, Spain. Sci. Total Environ. 2018, 645, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Kollanus, V.; Tiittanen, P.; Niemi, J.V.; Lanki, T. Effects of long-range transported air pollution from vegetation fires on daily mortality and hospital admissions in the Helsinki metropolitan area, Finland. Environ. Res. 2016, 151, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Evtyugina, M.; Calvo, A.I.; Nunes, T.; Alves, C.; Fernandes, A.P.; Tarelho, L.; Vicente, A.; Pio, C. VOC emissions of smouldering combustion from Mediterranean wildfires in central Portugal. Atmos. Environ. 2013, 64, 339–348. [Google Scholar] [CrossRef]
- Vicente, A.; Alves, C.; Monteiro, C.; Nunes, T.; Mirante, F.; Evtyugina, M.; Cerqueira, M.; Pio, C. Measurement of trace gases and organic compounds in the smoke plume from a wildfire in Penedono (central Portugal). Atmos. Environ. 2011, 45, 5172–5182. [Google Scholar] [CrossRef]
- Oliveira, M.; Delerue-Matos, C.; Pereira, M.C.; Morais, S. Environmental particulate matter levels during 2017 large forest fires and megafires in the center region of Portugal: A public health concern? Int. J. Environ. Res. Public Health 2020, 17, 1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, C.A.; Gonçalves, C.; Evtyugina, M.; Pio, C.A.; Mirante, F.; Puxbaum, H. Particulate organic compounds emitted from experimental wildland fires in a Mediterranean ecosystem. Atmos. Environ. 2010, 44, 2750–2759. [Google Scholar] [CrossRef]
- Alves, C.A.; Vicente, A.; Monteiro, C.; Gonçalves, C.; Evtyugina, M.; Pio, C. Emission of trace gases and organic components in smoke particles from a wildfire in a mixed-evergreen forest in Portugal. Sci. Total Environ. 2011, 409, 1466–1475. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.; Vicente, A.; Nunes, T.; Gonçalves, C.; Fernandes, A.P.; Mirante, F.; Tarelho, L.; Sanchez de la Campa, A.; Querol, X.; Caseiro, A.; et al. Summer 2009 wildfires in Portugal: Emission of trace gases and aerosol composition. Atmos. Environ. 2011, 45, 641–649. [Google Scholar]
- APA—Agência Portuguesa do Ambiente. Available online: https://qualar.apambiente.pt/ (accessed on 25 May 2020).
- CAMS—Copernicus Atmosphere Monitoring Service. Available online: http://atmosphere.copernicus.eu (accessed on 25 October 2020).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Trigo, R.M.; DaCamara, C.C. Circulation weather types and their influence on the precipitation regime in Portugal. Int. J. Climatol. 2000, 20, 1559–1581. [Google Scholar] [CrossRef]
- Ramos, A.M.; Sprenger, M.; Wernli, H.; Durán-Quesada, A.; Lorenzo, M.; Gimeno, L. A new circulation type classification based upon Lagrangian air trajectories. Front. Earth Sci. 2014, 2, 29. [Google Scholar] [CrossRef] [Green Version]
- Philipp, A.; Bartholy, J.; Beck, C.; Erpicum, M.; Esteban, P.; Huth, R.; James, P.; Jourdain, S.; Krennert, T.; Lykoudis, S.; et al. COST733CAT—A database of weather and circulation type classifications. Phys. Chem. Earth 2010, 35, 360–373. [Google Scholar] [CrossRef]
- Sousa, P.M.; Barriopedro, D.; Ramos, A.M.; García-Herrera, R.; Espírito-Santo, F.; Trigo, R.M. Saharan air intrusions as a relevant mechanism for Iberian heatwaves: The record breaking events of August 2018 and June 2019. Weather Clim. Extrem. 2019, 26, 100224. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Libertà, G.; Branco, A.; de Rigo, D.; Ferrari, D.; Maianti, P.; Vivancos, T.A.; Costa, H.; et al. Forest Fires in Europe, Middle East and North Africa 2017; EUR 29318 EN; Joint Research Centre: Ispra, Italy, 2018; ISBN 978-92-79-92831-4. [Google Scholar]
- ICNF—Instituto da Conservação da Natureza e das Florestas. Relatório Provisório de Incêndios Florestais—2017; Departamento de Gestão de áreas Classificadas, Públicas e de Proteção Florestal, Instituto da Conservação da Natureza e das Florestas: Lisboa, Portugal, 2017. Available online: http://www2.icnf.pt/portal/florestas/dfci/Resource/doc/rel/2017/9-rel-prov-1jan-16out-2017_v2.pdf (accessed on 15 October 2019).
- CAMS (Copernicus Atmosphere Monitoring Service)—Near Real Time (NRT). Available online: https://atmosphere.copernicus.eu/sites/default/files/2019-03/16_CAMS84_2018SC1_D1.1.1_SON2018_v1.pdf (accessed on 15 October 2020).
- Tomás, C.; de Pablo, F.; Rivas Soriano, L. Circulation weather types and cloud-to-ground flash density over the Iberian Peninsula. Int. J. Climatol. 2004, 24, 109–123. [Google Scholar] [CrossRef]
- García-Herrera, R.; Paredes, D.; Trigo, R.; Trigo, I.; Hernandez, E.; Barriopedro, D.; Mendes, M. The outstanding 2004/05 drought in the Iberian Peninsula: Associated atmospheric circulation. J. Hydrometeorol. 2007, 8, 483–498. [Google Scholar] [CrossRef] [Green Version]
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient air Quality and Cleaner Air for Europe. Available online: http://data.europa.eu/eli/dir/2008/50/2015-09-18 (accessed on 25 October 2020).
- Querol, X.; Alastuey, A.; Gangoiti, G.; Perez, N.; Lee, H.K.; Eun, H.R.; Park, Y.; Mantilla, E.; Escudero, M.; Titos, G.; et al. Phenomenology of summer ozone episodes over the Madrid Metropolitan Area, central Spain. Atmos. Chem. Phys. 2018, 18, 6511–6533. [Google Scholar] [CrossRef] [Green Version]
- Lonati, G.; Giugliano, M.; Cernuschi, S. The role of traffic emissions from weekends’ and weekdays’ fine PM data in Milan. Atmos. Environ. 2006, 40, 5998–6011. [Google Scholar] [CrossRef]
- Guerreiro, C.B.B.; Foltescu, V.; de Leeuw, F. Air quality status and trends in Europe. Atmos. Environ. 2014, 98, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Belis, C.A.; Karagulian, F.; Larsen, B.R.; Hopke, P.K. Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos. Environ. 2013, 69, 94–108. [Google Scholar] [CrossRef]
- Silva, A.V.; Oliveira, C.M.; Canha, N.; Miranda, A.I.; Almeida, S.M. Long-Term Assessment of Air Quality and Identification of Aerosol Sources at Setúbal, Portugal. Int. J. Environ. Res. Public Health 2020, 17, 5447. [Google Scholar] [CrossRef]
Station | Id | Altitude (m) | Latitude | Longitude | PM10 | PM2.5 | ||
---|---|---|---|---|---|---|---|---|
Mean Value (µg/m3) | Max Value (µg/m3) | Mean Value (µg/m3) | Max Value (µg/m3) | |||||
Chamusca | 1 | 143 | 39°21′09″ | −8°27′58″ | 16.77 | 203.13 | 8.83 | 148.0 |
Ervedeira | 2 | 60 | 39°55′26″ | −8°53′30″ | 20.62 | 1000.0 | 10.66 | 120.0 |
Estarreja | 3 | 15 | 40°45′31″ | −8º34′02″ | 28.50 | 311.0 | 15.61 | 241.0 |
Fundão | 4 | 473 | 40°13′59″ | −7°18′07″ | 13.57 | 367.0 | 6.58 | 232.0 |
Ílhavo | 5 | 32 | 40°35′23″ | −8°40′14″ | 24.83 | 237.0 | - | - |
Instituto Geofísico de Coimbra | 6 | 145 | 40°12′25″ | −8°24′39″ | 20.84 | 287.0 | - | - |
Loures-Centro | 7 | 10 | 38°49′47″ | −9°09′52″ | 22.56 | 185.37 | - | - |
Olivais | 8 | 32 | 38°46′08″ | −9°06′29″ | 23.88 | 167.61 | 12.12 | 112.0 |
Terena | 9 | 187 | 38°36′54″ | −7°23′51″ | 21.83 | 640.0 | 11.98 | 2060.0 |
Malpique | 10 | 45 | 37°05′30″ | −8°14′59″ | 22.38 | 273.9 | - | - |
Lamas d’Olo | 11 | 1086 | 41°22′17″ | −7°47′27″ | 15.68 | 288.0 | 5.34 | 107.0 |
Alcoutim | 12 | 300 | 37°18′45″ | −7°40′43″ | 15.08 | 278.1 | 6.50 | 138.0 |
Vermoim | 13 | 90 | 41°14′08″ | −8°37′07″ | 31.28 | 337.0 | 8.53 | 319.0 |
NE | E | SE | S | SW | W | NW | N | C | A | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|
Winter (DJF) | 5.8 | 6.9 | 3.3 | 3.9 | 7.7 | 11.2 | 6.4 | 6.3 | 6.1 | 42.4 | 100.0 |
Spring (MAM) | 13.4 | 8.3 | 2.4 | 1.2 | 5.6 | 8.0 | 8.6 | 11.7 | 12.9 | 27.8 | 100.0 |
Summer (JJA) | 26.0 | 2.0 | 0.1 | 0.2 | 1.3 | 3.7 | 9.7 | 26.6 | 6.7 | 23.7 | 100.0 |
Autumn (SON) | 14.5 | 8.8 | 1.9 | 2.1 | 8.9 | 7.5 | 6.1 | 7.6 | 12.1 | 30.4 | 100.0 |
Year | 14.9 | 6.5 | 2.0 | 1.9 | 5.9 | 7.6 | 7.7 | 13.1 | 9.4 | 31.1 | 100.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavaleiro, R.; Russo, A.; Sousa, P.M.; Durão, R. Association between Prevailing Circulation Patterns and Coarse Particles in Portugal. Atmosphere 2021, 12, 85. https://doi.org/10.3390/atmos12010085
Cavaleiro R, Russo A, Sousa PM, Durão R. Association between Prevailing Circulation Patterns and Coarse Particles in Portugal. Atmosphere. 2021; 12(1):85. https://doi.org/10.3390/atmos12010085
Chicago/Turabian StyleCavaleiro, Rui, Ana Russo, Pedro M. Sousa, and Rita Durão. 2021. "Association between Prevailing Circulation Patterns and Coarse Particles in Portugal" Atmosphere 12, no. 1: 85. https://doi.org/10.3390/atmos12010085