Large Day-to-Day Variability of Extreme Air Temperatures in Poland and Its Dependency on Atmospheric Circulation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Mean Annual Day-to-Day Changes of Tmax and Tmin
3.2. Large Day-to-Day Changes of Tmax and Tmin
3.3. Influence of Atmospheric Circulation
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; 1535p. [Google Scholar] [CrossRef] [Green Version]
- Kossowska-Cezak, U. Duże zmiany temperatury z dnia na dzień a cyrkulacja atmosferyczna. Przegl. Geofiz. 1987, 32, 289–302. [Google Scholar]
- Rebetez, M. Changes in daily and nightly day-to-day temperature variability during the twentieth century for two stations in Switzerland. Theor. Appl. Climatol. 2001, 69, 13–21. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zhang, J. Diurnal asymmetry in future temperature changes over the main Belt and Road regions. Ecosyst. Health Sustain. 2020, 6, 1749530. [Google Scholar] [CrossRef] [Green Version]
- Panfil, M.; Dragańska, E. Związki korelacyjne między wskaźnikami NAO wg Jones’a oraz Hurrela a warunkami termicznymi i opadowymi dla Polski północno-wschodniej. Acta Agrophys. 2004, 3, 133–142. [Google Scholar]
- Wibig, J.; Głowicki, B. Trends in minimum and maximum temperature in Poland. Clim. Res. 2002, 20, 123–133. [Google Scholar] [CrossRef]
- Porebska, M.; Zdunek, M. Analysis of extreme temperature events in Central Europe related to high pressure blocking situations in 2001–2011. Meteorol. Z. 2013, 22, 533–540. [Google Scholar] [CrossRef] [Green Version]
- Tomczyk, A.M.; Bednorz, E. Heat waves in Central Europe and their circulation conditions. Int. J. Climatol. 2016, 36, 770–782. [Google Scholar] [CrossRef]
- Wibig, J. Heat waves in Poland in the period 1951–2015: Trends, patterns and driving factors. Meteorol. Hydrol. Water Manag. 2018, 6, 37–45. [Google Scholar] [CrossRef]
- Moberg, A.; Jones, P.D.; Barriendos, M.; Berstoem, H.; Camuffo, D.; Cocheo, C.; Davies, T.D.; Demareae, G.; Maugeri, M.; Martin-Vide, J.; et al. Day-today-temperature variability trends in 160- to 275-year-long European instrumental records. J. Geophys. Res. 2000, 105, 22849–22868. [Google Scholar] [CrossRef]
- Cattiaux, J.; Douville, H.; Schoetter, R.; Parey, S.; You, P. Projected increase in diurnal and interdiurnal variations of European summer temperatures. Geophys. Res. Lett. 2015, 42, 899–907. [Google Scholar] [CrossRef]
- Lobell, D.B.; Bonfils, C.; Duffy, P.B. Climate change uncertainty for daily minimum and maximum temperatures: A model inter-comparison. Geophys. Res. Lett. 2007, 34, L05715. [Google Scholar] [CrossRef] [Green Version]
- He, B.; Huang, L.; Wang, Q. Precipitation deficits increase high diurnal temperature range extremes. Sci. Rep. 2015, 5, 12004. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.; Leng, G. Changes in cloud cover, precipitation, and summer temperature in North America from 1982 to 2009. J. Clim. 2013, 26, 1733–1744. [Google Scholar] [CrossRef]
- Del Genio, A.D.; Wolf, A.B. The temperature dependence of the liquid water path of low clouds in the southern Great Plains. J. Clim. 2000, 13, 3465–3486. [Google Scholar] [CrossRef]
- Norris, J.R.; Iacobellis, S.F. North Pacific cloud feedback inferred from synoptic-scale dynamic and thermodynamic relationships. J. Clim. 2005, 18, 4862–4878. [Google Scholar] [CrossRef] [Green Version]
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.-M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. Clouds and aerosols. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Doschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 571–657. [Google Scholar] [CrossRef]
- Sfîcă, L.; Beck, C.; Nita, A.-I.; Voiculescu, M.; Birsan, M.-V.; Philipp, A. Cloud cover changes driven by atmospheric circulation in Europe during the last decades. Int. J. Climatol. 2020, 1–20. [Google Scholar] [CrossRef]
- Kossowska-Cezak, U. Duże zmiany temperatury z dnia na dzień w Polsce. Przegl. Geofiz. 1982, 27, 197–214. [Google Scholar]
- Brazdil, R.; Budikova, M.; Auer, I.; Böhm, R.; Cegnar, T.; Fasko, P.; Gajič Capka, M.; Lapin, M.; Niedźwiedź, T.; Szalai, S.; et al. Trends of maximum and minimum daily temperature in Central and Southeastern Europe. Int. J. Climatol. 1996, 16, 765–782. [Google Scholar] [CrossRef]
- Karl, T.R.; Jones, P.D.; Knight, R.W.; Kukla, G.; Plummer, N.; Razuvayev, V.N.; Gallo, K.P.; Lidesay, J.; Charlson, R.J.; Peterson, T.C. A new perspective on recent global warming: Assymetric trends of daily maximum and minimum temperature. Bul. Am. Meteorol. Soc. 1993, 74, 11007–11023. [Google Scholar] [CrossRef] [Green Version]
- Kozłowska-Szczęsna, T.; Błażejczyk, K.; Krawczyk, B. Bioklimatologia Człowieka. Metody i ich Zastosowanie w Badaniach Bioklimatu Polski; Monografie 1; PAN IGiPZ: Warszawa, Poland, 1997. [Google Scholar]
- Tomczyk, A.M.; Szyga-Pluta, K.; Majkowska, A. Frost and frost-free periods in Poland and neighboring countries. Open Geosci. 2015, 7, 812–823. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Szyga-Pluta, K.; Bednorz, E. Occurrence and synoptic background of strong and very strong frost in spring and autumn in Central Europe. Int. J. Biometeorol. 2020, 64, 59–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortuniak, K.; Kłysik, K.; Wibig, J. Międzydobowa zmienność temperatury powietrza w Łodzi. Acta Geogr. Lodz. 2004, 89, 35–46. [Google Scholar]
- DeGaetano, A.T. A method of infer observation time based on day-to-day temperature variations. J. Clim. 1999, 12, 3443–3456. [Google Scholar] [CrossRef]
- Wibig, J. Wpływ cyrkulacji atmosferycznej na miedzydobowe zmiany temperatury minimalnej i maksymalnej. Prace Studia Geogr. 2001, 29, 223–232. [Google Scholar]
- Panfil, M. Zmiany i zmienność temperatur ekstremalnych z dnia na dzień w Polsce północno-wschodniej w okresie 1951–2000. Dok. Geogr. 2006, 32, 225–229. [Google Scholar]
- Panfil, M. Duże zmiany międzydobowe temperatur ekstremalnych w drugiej połowie XX wieku. Acta Agrophys. 2007, 10, 649–658. [Google Scholar]
- Ciaranek, D. Krókookresowe zmiany maksymalnej temperatury powietrza w półroczu chłodnym w Polsce. Acta Sci. Pol. Formatio Circumiectus 2016, 15, 49–58. [Google Scholar] [CrossRef]
- Piotrowicz, K.; Ciaranek, D.; Guzik, I. Short-term variations in the air temperature in Krakow (Poland) as an indicator of climate change in Central Europe. Idojaras 2017, 121, 117–135. [Google Scholar]
- Brunetti, M.; Buffoni, L.; Maugeri, M.; Nanni, T. Trends of minimum and maximum daily temperatures in Italy from 1865 to 1996. Theor. Appl. Climatol. 2000, 66, 49–60. [Google Scholar] [CrossRef]
- Tam, B.Y.; Gough, W.A.; Mohsin, T. The impact of urbanization and the urban heat island effect on day to day temperature variation. Urban Clim. 2015, 12, 1–10. [Google Scholar] [CrossRef]
- Niedźwiedź, T. Sytuacje Synoptyczne I Ich Wpływ na Zróżnicowanie Przestrzenne Wybranych Elementów Klimatu w Dorzeczu Górnej Wisły; Rozprawy Habilitacyjne Uniwersytetu Jagiellońskiego: Kraków, Poland, 1981; Volume 58. [Google Scholar]
- Yarnal, B. Synoptic Climatology in Environmental Analysis; Belhaven Press: London, UK, 1993. [Google Scholar]
- Salmi, T.; Maiittii, A.; Anttila, P.; Ruoho-Airola, T.; Amnel, T. Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann–Kendall Test and Sen’s Slope Estimates–The Excel Template Application MAKESENS; Volume 31, Publications on Air Quality; Finnish Meteorological Institute: Helsinki, Finland, 2002; pp. 1–35.
- James, P.M. An objective classification method for Hess and Berezowsky Grosswetterlagen over Europe. Theor. Appl. Climatol. 2007, 88, 17–42. [Google Scholar] [CrossRef]
- Hess, P.; Brezowsky, H. Katalog der Grosswetterlagen Europas 1881–1976. 3. Verbesserte und ergänzte Auflage. Berichte des Deutschen Wetterdienstes 1977, 113, 1–140. [Google Scholar]
- Gerstengarbe, F.W.; Werner, P.C. Katalog der Großwetterlagen Europas (1881–2004) nach Paul Hess und Helmuth Brezowsky, 6th ed.; Selbstverlag des Deutschen Wetterdienstes: Potsdam, Germany, 2005. [Google Scholar]
- Khokhlov, V.; Umanska, O. European Atmospheric Circulation Classifications. J. Geogr. Environ. Earth Sci. Int. 2018, 16, 1–8. [Google Scholar] [CrossRef]
- Bardossy, A.; Caspary, H.J. Detection of climate change in Europe by analyzing European atmospheric circulation patterns from 1881 to 1989. Theor. Appl. Climatol. 1990, 42, 155–167. [Google Scholar] [CrossRef]
- Kaszewski, B.M.; Filipiuk, E. Variability of atmospheric circulation in Central Europe in the summer season 1881–1998 (on the basis of the Hess-Brezowsky classification). Meteorol. Z. 2003, 12, 123–130. [Google Scholar] [CrossRef]
- Keevallik, S.; Post, P.; Tuulik, J. European circulation patterns and meteorological situation in Estonia. Theor. Appl. Climatol. 1999, 63, 117–127. [Google Scholar] [CrossRef]
- Kyselý, J.; Domonkos, P. Recent increase in persistence of atmospheric circulation over Europe: Comparison with long-term variations since 1881. Int. J. Climatol. 2006, 26, 461–483. [Google Scholar] [CrossRef] [Green Version]
- Ustrnul, Z. Spatial differentiation of air temperature in Poland using circulation types and GIS. Int. J. Climatol. 2006, 26, 1529–1546. [Google Scholar] [CrossRef]
- Ustrnul, Z.; Wypych, A.; Winkler, J.A.; Czekierda, D. Late spring freezes in Poland in relation to atmospheric circulation. Quaest. Geogr. 2014, 33, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Bartoszek, K.; Skiba, D. Circulation types classification and for hourly precipitation events in Lublin (East Poland). Open Geosci. 2016, 8, 214–230. [Google Scholar] [CrossRef]
- Kossowski, J. Zmienność z dnia na dzień maksymalnej i minimalnej temperatury powietrza. Ann. UMCS 1970, 25, 206–213. [Google Scholar]
- Bigg, G.R.; Wise, S.M.; Hanna, E.; Mansell, D.; Bryant, R.G.; Howard, A. Synoptic climatology of cold air drainage in the Derwent Valley, Peak District, UK. Meteorol. Appl. 2014, 21, 161–170. [Google Scholar] [CrossRef]
- Piskala, V.; Huth, R. Asymmetry of day-to-day temperature changes and its causes. Theor. Appl. Climatol. 2020, 140, 683–690. [Google Scholar] [CrossRef]
- Kyselỳ, J. Influence of the persistence of circulation patterns on warm and cold temperature anomalies in Europe: Analysis over the 20th century. Glob. Planet. Change 2008, 62, 147–163. [Google Scholar] [CrossRef]
- Kuziemska, D. Zróżnicowanie temperatury powietrza na obszarze Polski a typy cyrkulacji atmosferycznej nad Europą Środkową. Przegl. Geofiz. 1987, 32, 277–287. [Google Scholar]
- Szwejkowski, Z.; Dragańska, E.; Grabowska, K. Następstwo elementów pogodowych w Polsce północno-wschodniej w latach 1951–2000. Przegląd Naukowy IiKŚ SGGW XV 2006, 1, 123–136. [Google Scholar]
- Tomczyk, A.M. Impact of atmospheric circulation on the occurrence of hot nights in Central Europe. Atmosphere 2018, 9, 474. [Google Scholar] [CrossRef] [Green Version]
- Philipp, A.; Beck, C.; Huth, R.; Jacobeit, J. Development and comparison of circulation type classification using the COST733 dataset and software. Int. J. Climatol. 2014, 36, 2671–2809. [Google Scholar] [CrossRef]
- Tang, Q.; Leng, G. Damped summer warming accompanied with cloud cover increase over Eurasia from 1982 to 2009. Environ. Res. Lett. 2012, 7, 014004. [Google Scholar] [CrossRef]
Circulation Type (Grosswettertype; GWT) | Symbol | Atmospheric Circulation Patterns (Grosswetterlage; GWL) |
---|---|---|
North | HB | British Isles High |
HNA | Norwegian Sea High, anticyclonic | |
HNZ | Norwegian Sea High, cyclonic | |
NA | North Circulation, anticyclonic | |
NZ | North Circulation, cyclonic | |
TRM | Central Europe Trough | |
Northeast | NEA | Northeast Circulation, anticyclonic |
NEZ | Northeast Circulation, cyclonic | |
East | HFA | Fennoscandian High, anticyclonic |
HFZ | Fennoscandian High, cyclonic | |
HNFA | Norwegian Sea/Fennoscandia High, anticyclonic | |
HNFZ | Norwegian Sea/Fennoscandia High, cyclonic | |
Southeast | SEA | Southeast Circulation, anticyclonic |
SEZ | Southeast Circulation, cyclonic | |
South | SA | South Circulation, anticyclonic |
SZ | South Circulation, cyclonic | |
TB | British Isles Low | |
TRW | Western Europe Trough | |
Southwest | SWA | Southwest Circulation, anticyclonic |
SWZ | Southwest Circulation, cyclonic | |
West | WA | West Circulation, anticyclonic |
WS | West Circulation, cyclonic | |
WZ | Southern West Circulation | |
WW | Angled West Circulation | |
Northwest | NWA | Northwest Circulation, anticyclonic |
NWZ | Northwest Circulation, cyclonic | |
Central Europe High | HM | Central European High |
BM | Central European Ridge | |
Central Europe Low | TM | Central European Low |
U | Undefined |
Circulation Type | Associated Grosswetterlagen | |
---|---|---|
Full Weight | Half Weight | |
Westerly | WA, WZ, WS, WW | SWA, SWZ, NWA, NWZ |
Northerly | NA, NZ, HNA, HNZ, HB, TRM | NWA, NWZ, NEA, NEZ |
Easterly | HFA, HFZ, HNFA, HNFZ | SEA, SEZ, NEA, NEZ |
Southerly | SA, SZ, TB, TRW | SWA, SWZ, SEA, SEZ |
Central | HM, BM, TM | |
Cyclonic | WZ, WS, WW, SWZ, NWZ, TM, NZ, HNZ, TRM, NEZ, HFZ, HNFZ, SEZ, SZ, TB, TRW | |
Anticyclonic | WA, SWA, NWA, HM, BM, NA, HNA, HB, NEA, HFA, HNFA, SEA, SA |
Circulation Type | Increase | Decrease | ||
---|---|---|---|---|
Tmax > 6 °C | Tmin > 6 °C | Tmax > 6 °C | Tmin > 6 °C | |
Westerly | 22.7 | 30.7 | 19.5 | 20.8 |
Northerly | 17.6 | 23.7 | 39.5 | 32.9 |
Easterly | 18.4 | 11.3 | 16.5 | 18.8 |
Southerly | 29.4 | 21.7 | 12.7 | 13.9 |
Central | 8.6 | 10.0 | 9.2 | 9.9 |
Cyclonic | 58.7 | 59.8 | 54.8 | 43.0 |
Anticyclonic | 37.5 | 37.6 | 42.6 | 53.3 |
Undefined | 3.8 | 2.6 | 2.6 | 3.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szyga-Pluta, K. Large Day-to-Day Variability of Extreme Air Temperatures in Poland and Its Dependency on Atmospheric Circulation. Atmosphere 2021, 12, 80. https://doi.org/10.3390/atmos12010080
Szyga-Pluta K. Large Day-to-Day Variability of Extreme Air Temperatures in Poland and Its Dependency on Atmospheric Circulation. Atmosphere. 2021; 12(1):80. https://doi.org/10.3390/atmos12010080
Chicago/Turabian StyleSzyga-Pluta, Katarzyna. 2021. "Large Day-to-Day Variability of Extreme Air Temperatures in Poland and Its Dependency on Atmospheric Circulation" Atmosphere 12, no. 1: 80. https://doi.org/10.3390/atmos12010080
APA StyleSzyga-Pluta, K. (2021). Large Day-to-Day Variability of Extreme Air Temperatures in Poland and Its Dependency on Atmospheric Circulation. Atmosphere, 12(1), 80. https://doi.org/10.3390/atmos12010080