Changes in Intensity and Variability of Tropical Cyclones over the Western North Pacific and Their Local Impacts under Different Types of El Niños
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Weather Stations
2.2. Classification of El Niño Events
2.3. Tropical Cyclone Data
2.4. Methodology
2.4.1. Kriging
2.4.2. Welch’s t-Test
2.4.3. Pettitt Test
3. Analysis Results
3.1. Characteristics of TCs under Different Types of El Niños
3.1.1. Magnitude of TCs
3.1.2. Genesis Positions and Tracks of TCs
3.2. TC-Induced Rainfall over China
Intensity of TC-Induced Rainfall
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, Y.; Zhao, M.; Zhang, M. Tropical cyclone rainfall area controlled by relative sea surface temperature. Nat. Commun. 2015, 6, 1–7. [Google Scholar] [CrossRef]
- Lau, K.-M.; Zhou, Y.P.; Wu, H.-T. Have tropical cyclones been feeding more extreme rainfall? J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Zhao, L.; Bai, X.; Qi, D.; Xing, C. BMA probability quantitative precipitation forecasting of land-falling typhoons in south-east China. Front. Earth Sci. 2019, 13, 758–777. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, C. On the relationship between ENSO and tropical cyclones in the western North Pacific during the boreal summer. Clim. Dyn. 2019, 52, 275–288. [Google Scholar] [CrossRef]
- Deser, C.; Alexander, M.A.; Xie, S.-P.; Phillips, A.S. Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci. 2010, 2, 115–143. [Google Scholar] [CrossRef] [PubMed]
- Shuqiu, L.X.Y. El Niño and rainfall during the flood season (June-August) in China. Acta Meteorol. Sin. 1993, 51, 434–441. [Google Scholar]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Zhang, Q.; Lai, Y.; Gu, X.; Shi, P.; Singh, V.P. Tropical cyclonic rainfall in China: Changing properties, seasonality, and causes. J. Geophys. Res. Atmos. 2018, 123, 4476–4489. [Google Scholar] [CrossRef]
- Yonekura, E.; Hall, T.M. A statistical model of tropical cyclone tracks in the western North Pacific with ENSO-dependent cyclogenesis. J. Appl. Meteorol. Clim. 2011, 50, 1725–1739. [Google Scholar] [CrossRef]
- Hirata, H.; Kawamura, R. Scale interaction between typhoons and the North Pacific subtropical high and associated remote effects during the Baiu/Meiyu season. J. Geophys. Res. Atmos. 2014, 119, 5157–5170. [Google Scholar] [CrossRef]
- Sun, Y.; Zhong, Z.; Yi, L.; Li, T.; Chen, M.; Wan, H.; Wang, Y.; Zhong, K. Dependence of the relationship between the tropical cyclone track and western Pacific subtropical high intensity on initial storm size: A numerical investigation. J. Geophys. Res. Atmos. 2015, 120, 11–451. [Google Scholar] [CrossRef]
- Chen, X.; Zhong, Z.; Lu, W. Association of the poleward shift of East Asian subtropical upper-level jet with frequent tropical cyclone activities over the western North Pacific in summer. J. Clim. 2017, 30, 5597–5603. [Google Scholar] [CrossRef]
- Cai, M.; Ding, Y.; Jiang, Z. Extreme Precipitation Experimentation over Eastern China Based on L-moment Estimation. Plateau Meteorol. 2007, 26, 012. [Google Scholar]
- Corporal-Lodangco, I.L.; Leslie, L.M.; Lamb, P.J. Impacts of ENSO on Philippine tropical cyclone activity. J. Clim. 2016, 29, 1877–1897. [Google Scholar] [CrossRef]
- Camargo, S.J.; Sobel, A.H. Western North Pacific tropical cyclone intensity and ENSO. J. Clim. 2005, 18, 2996–3006. [Google Scholar] [CrossRef]
- Colbert, A.J.; Soden, B.J.; Kirtman, B.P. The impact of natural and anthropogenic climate change on western North Pacific tropical cyclone tracks. J. Clim. 2015, 28, 1806–1823. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, X.; Sun, C.; Cao, M.; Wu, X.; Lu, S. Influence of ENSO Events on Tropical Cyclone Activity over the Western North Pacific. J. Ocean Univ. China 2019, 18, 784–794. [Google Scholar] [CrossRef]
- Okumura, Y.M. ENSO diversity from an atmospheric perspective. Curr. Clim. Chang. Rep. 2019, 5, 245–257. [Google Scholar] [CrossRef]
- Cai, W.; McPhaden, M.J.; Grimm, A.M.; Rodrigues, R.R.; Taschetto, A.S.; Garreaud, R.D.; Dewitte, B.; Poveda, G.; Ham, Y.-G.; Santoso, A. Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 2020, 1, 215–231. [Google Scholar] [CrossRef]
- Wang, B.; Luo, X.; Yang, Y.-M.; Sun, W.; Cane, M.A.; Cai, W.; Yeh, S.-W.; Liu, J. Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc. Natl. Acad. Sci. USA 2019, 116, 22512–22517. [Google Scholar] [CrossRef]
- Li, Y.; Ma, B.; Feng, J.; Lu, Y. Influence of the strongest central Pacific El Niño–Southern Oscillation events on the precipitation in eastern China. Int. J. Clim. 2019, 39, 3076–3090. [Google Scholar] [CrossRef]
- Lu, A.; Jia, S.; Yan, H.; Wang, S. El Nino-Southern Oscillation and water resources in headwaters region of the Yellow River: Links and potential for forecasting. Hydrol. Earth Syst. Sci. Discuss. 2010, 7, 8521–8543. [Google Scholar] [CrossRef]
- Kim, J.-S.; Jain, S.; Yoon, S.-K. Warm season streamflow variability in the Korean Han River Basin: Links with atmospheric teleconnections. Int. J. Clim. 2012, 32, 635–640. [Google Scholar] [CrossRef]
- Kim, J.-S.; Jain, S. Precipitation trends over the Korean peninsula: Typhoon-induced changes and a typology for characterizing climate-related risk. Environ. Res. Lett. 2011, 6, 034033. [Google Scholar] [CrossRef]
- Qian, W.; Lin, X. Regional trends in recent precipitation indices in China. Meteorol. Atmos. Phys. 2005, 90, 193–207. [Google Scholar] [CrossRef]
- Laing, A.; Evans, J.L. Introduction to Tropical Meteorology; Educational Material from the COMET Program; COMET MetEd: Boulder, CO, USA, 2011. [Google Scholar]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc. 1996, 77, 437–470. [Google Scholar] [CrossRef]
- Matheron, G. Principles of geostatistics. Econ. Geol. 1963, 58, 1246–1266. [Google Scholar] [CrossRef]
- Le, N.D.; Zidek, J.V. Statistical Analysis of Environmental Space-Time Processes; Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- Cressie, N. The origins of kriging. Math. Geol. 1990, 22, 239–252. [Google Scholar] [CrossRef]
- Delhomme, J.P. Kriging in the hydrosciences. Adv. Water Resour. 1978, 1, 251–266. [Google Scholar] [CrossRef]
- Su, S.; Lin, A.; Liu, Q. The application of ordinary Kriging method in spatial interpolation. J. Jiangnan Univ. (Nat. Sci. Ed.) 2004, 3, 18–21. [Google Scholar]
- Welch, B.L. The generalization of ‘Student’s’ problem when several different population variances are involved. Biometrika 1947, 34, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Yin, X. The Principle and Operation of Econometrics; ChongQing University Press: ChongQing, China, 2009; Volume 8. [Google Scholar]
- Machiwal, D.; Jha, M.K. Hydrologic Time Series Analysis: Theory and Practice; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Pettitt, A.N. A non-parametric approach to the change-point problem. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Wijngaard, J.B.; Klein Tank, A.M.G.; Können, G.P. Homogeneity of 20th century European daily temperature and precipitation series. Int. J. Clim. J. R. Meteorol. Soc. 2003, 23, 679–692. [Google Scholar] [CrossRef]
- Smadi, M.M.; Zghoul, A. A sudden change in rainfall characteristics in Amman, Jordan during the mid 1950s. Am. J. Environ. Sci. 2006, 2, 84–91. [Google Scholar] [CrossRef]
- Dhorde, A.G.; Zarenistanak, M. Three-way approach to test data homogeneity: An analysis of temperature and precipitation series over southwestern Islamic Republic of Iran. J. Indian Geophys. Union 2013, 17, 233–242. [Google Scholar]
- Jaiswal, R.K.; Lohani, A.K.; Tiwari, H.L. Statistical analysis for change detection and trend assessment in climatological parameters. Environ. Process. 2015, 2, 729–749. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kim, S.T.; Wang, L.; Wang, X.; Moon, Y.-I. Tropical cyclone activity in the northwestern Pacific associated with decaying Central Pacific El Ninos. Stoch. Environ. Res. Risk Assess. 2016, 30, 1335–1345. [Google Scholar] [CrossRef]
Moderate Central Pacific (MCP) | Moderate Eastern Pacific (MEP) | Strong Basin-Wide (SBW) |
---|---|---|
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yoon, S.-K.; Kim, J.-S.; Xiong, L.; Lee, J.-H. Changes in Intensity and Variability of Tropical Cyclones over the Western North Pacific and Their Local Impacts under Different Types of El Niños. Atmosphere 2021, 12, 59. https://doi.org/10.3390/atmos12010059
Liu Y, Yoon S-K, Kim J-S, Xiong L, Lee J-H. Changes in Intensity and Variability of Tropical Cyclones over the Western North Pacific and Their Local Impacts under Different Types of El Niños. Atmosphere. 2021; 12(1):59. https://doi.org/10.3390/atmos12010059
Chicago/Turabian StyleLiu, Yuhang, Sun-Kwon Yoon, Jong-Suk Kim, Lihua Xiong, and Joo-Heon Lee. 2021. "Changes in Intensity and Variability of Tropical Cyclones over the Western North Pacific and Their Local Impacts under Different Types of El Niños" Atmosphere 12, no. 1: 59. https://doi.org/10.3390/atmos12010059
APA StyleLiu, Y., Yoon, S.-K., Kim, J.-S., Xiong, L., & Lee, J.-H. (2021). Changes in Intensity and Variability of Tropical Cyclones over the Western North Pacific and Their Local Impacts under Different Types of El Niños. Atmosphere, 12(1), 59. https://doi.org/10.3390/atmos12010059