In Situ Measurements of Cirrus Clouds on a Global Scale
Abstract
:1. Introduction
2. Measurements
2.1. Global Measurement Distribution
2.2. Cloud Fractions
2.3. Seasonal Trends in Cloud Fractions
Seasonal Variations in Cloud Fraction by Region
3. Discussion
4. Conclusions
- We examined regions of the globe covering oceanic, continental and tropical areas to see how representative the dataset was in demonstrating common seasonal trends in each region.
- We found that the measurements were able to demonstrate seasonal changes in the cloud fraction associated with the Northern Hemisphere mid-latitude jet stream and the relatively higher cloud fractions found in tropical regions as a result of thunderstorm cirrus outflow.
- This dataset and the ongoing measurements as part of IAGOS are an important addition to the already existing infrastructure for the monitoring of high-altitude clouds that include remote sensing (ground based and space borne) and targeted research flights.
- The measurements also provide an excellent tool for the aviation industry to investigate the influence of adverse conditions on aircraft performance.
- Cloud fraction calculations included both tropospheric and stratospheric data to assess the conditions in the context of commercial flight paths. Further works are needed to compare the cloud fraction values presented in this paper with previous research.
Author Contributions
Funding
Conflicts of Interest
References
- Petzold, A.; Thouret, V.; Gerbig, C.; Zahn, A.; Brenninkmeijer, C.A.M.; Gallagher, M.; Hermann, M.; Pontaud, M.; Ziereis, H.; Boulanger, D.; et al. Global-scale atmosphere monitoring by in-service aircraft—Current achievements and future prospects of the European Research Infrastructure IAGOS. Tellus B Chem. Phys. Meteorol. 2015, 67, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy. Bull. Am. Meteorol. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef]
- Berkes, F.; Neis, P.; Schultz, M.; Bundke, U.; Rohs, S.; Smit, H.G.J.; Wahner, A.; Konopka, P.; Boulanger, D.; Nédélec, P.; et al. In situ temperature measurements in the upper troposphere and lowermost stratosphere from 2 decades of IAGOS long-term routine observation. Atmos. Chem. Phys. Discuss. 2017, 17, 12495–12508. [Google Scholar] [CrossRef] [Green Version]
- Filges, A.; Gerbig, C.; Chen, H.; Franke, H.; Klaus, C.; Jordan, A. The IAGOS-core greenhouse gas package: A measurement system for continuous airborne observations of CO2, CH4, H2O and CO. Tellus B Chem. Phys. Meteorol. 2015, 67, 27989. [Google Scholar] [CrossRef]
- Filges, A.; Gerbig, C.; Rella, C.W.; Hoffnagle, J.; Smit, H.; Krämer, M.; Spelten, N.; Rolf, C.; Bozóki, Z.; Buchholz, B.; et al. Evaluation of the IAGOS-Core GHG package H2O measurements during the DENCHAR airborne inter-comparison campaign in 2011. Atmos. Meas. Tech. 2018, 11, 5279–5297. [Google Scholar] [CrossRef] [Green Version]
- Clark, H.; Sauvage, B.; Thouret, V.; Nédélec, P.; Blot, R.; Wang, K.; Smit, H.; Neis, P.; Petzold, A.; Athier, G. The first regular measurements of ozone, carbon monoxide and water vapour in the Pacific UTLS by IAGOS the first regular measurements of ozone, carbon monoxide and water vapour in the Pacific UTLS by IAGOS. Tellus B Chem. Phys. Meteorol. 2015, 67, 28385. [Google Scholar] [CrossRef] [Green Version]
- Cohen, Y.; Petetin, H.; Thouret, V.; Marécal, V.; Josse, B.; Clark, H.; Sauvage, B.; Fontaine, A.; Athier, G.; Blot, R.; et al. Climatology and long-term evolution of ozone and carbon monoxide in the upper troposphere–lower stratosphere (UTLS) at northern midlatitudes, as seen by IAGOS from 1995 to 2013. Atmos. Chem. Phys. Discuss. 2018, 18, 5415–5453. [Google Scholar] [CrossRef] [Green Version]
- Gaudel, A.; Cooper, O.R.; Ancellet, G.; Barret, B.; Boynard, A.; Burrows, J.P.; Clerbaux, C.; Coheur, P.-F.; Cuesta, J.; Cuevas, E.; et al. Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elem. Sci. Anthr. 2018, 6. [Google Scholar] [CrossRef]
- Petzold, A.; Krämer, M.; Neis, P.; Rolf, C.; Rohs, S.; Berkes, F.; Smit, H.G.J.; Gallagher, M.; Beswick, K.; Lloyd, G.; et al. Upper tropospheric water vapour and its interaction with cirrus clouds as seen from IAGOS long-term routine in situ observations. Faraday Discuss. 2017, 200, 229–249. [Google Scholar] [CrossRef]
- Beswick, K.; Baumgardner, D.; Gallagher, M.; Raga, G.B.; Minnis, P.; Spangenberg, D.A.; Volz-Thomas, A.; Nedelec, P.; Wang, K.-Y. Properties of small cirrus ice crystals from commercial aircraft measurements and implications for flight operations. Tellus B Chem. Phys. Meteorol. 2015, 67, 27876. [Google Scholar] [CrossRef]
- Jones, H.M.; Haywood, J.; Marenco, F.; O’Sullivan, D.; Meyer, J.; Thorpe, R.; Gallagher, M.W.; Krämer, M.; Bower, K.N.; Rädel, G.; et al. A methodology for in-situ and remote sensing of microphysical and radiative properties of contrails as they evolve into cirrus. Atmos. Chem. Phys. Discuss. 2012, 12, 8157–8175. [Google Scholar] [CrossRef] [Green Version]
- Kärcher, B. Formation and radiative forcing of contrail cirrus. Nat. Commun. 2018, 9, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, U.; Kärcher, B. Process-based simulation of contrail cirrus in a global climate model. J. Geophys. Res. Space Phys. 2009, 114, 16201. [Google Scholar] [CrossRef] [Green Version]
- Minnis, P.; Schumann, U.; Doelling, D.R.; Gierens, K.M.; Fahey, D.W. Global distribution of contrail radiative forcing. Geophys. Res. Lett. 1999, 26, 1853–1856. [Google Scholar] [CrossRef] [Green Version]
- Fahey, D.W.; Schumann, U.; Ackerman, S.; Artaxo, P.; Boucher, O. Aviation-produced aerosol and cloudiness. Changes 1999, 3, 4. [Google Scholar]
- Baran, A.J. From the single-scattering properties of ice crystals to climate prediction: A way forward. Atmos. Res. 2012, 112, 45–69. [Google Scholar] [CrossRef]
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Rasch, P. Clouds and aerosols. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovern-Mental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 571–657. [Google Scholar]
- Kärcher, B. Cirrus Clouds and Their Response to Anthropogenic Activities. Curr. Clim. Chang. Rep. 2017, 3, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Krämer, M.; Rolf, C.; Luebke, A.; Afchine, A.; Spelten, N.; Costa, A.; Meyer, J.; Zöger, M.; Smith, J.; Herman, R.L.; et al. A microphysics guide to cirrus clouds—Part 1: Cirrus types. Atmos. Chem. Phys. Discuss. 2016, 16, 3463–3483. [Google Scholar] [CrossRef] [Green Version]
- Krämer, M.; Rolf, C.; Spelten, N.; Afchine, A.; Fahey, D.; Jensen, E.; Khaykin, S.; Kuhn, T.; Lawson, P.; Lykov, A.; et al. A Microphysics Guide to Cirrus— Part II: Climatologies of Clouds and Humidity from Observations. Atmos. Chem. Phys. Discuss. 2020, 20, 12569–12608. [Google Scholar] [CrossRef] [Green Version]
- Sassen, K.; Wang, Z.; Liu, D. Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res. Space Phys. 2008, 113, 1–12. [Google Scholar] [CrossRef]
- Sassen, K.; Mace, G. Ground-Based Remote Sensing of Cirrus Clouds; Oxford: New York, NY, USA, 2002; pp. 168–209. [Google Scholar]
- Lawson, R.P.; Woods, S.; Jensen, E.J.; Erfani, E.; Gurganus, C.; Gallagher, M.; Connolly, P.J.; Whiteway, J.; Baran, A.J.; May, P.; et al. A Review of Ice Particle Shapes in Cirrus formed In Situ and in Anvils. J. Geophys. Res. Atmos. 2019, 124, 10049–10090. [Google Scholar] [CrossRef] [Green Version]
- Beswick, K.M.; Baumgardner, D.; Gallagher, M.; Volz-Thomas, A.; Nedelec, P.; Wang, K.-Y.; Lance, S. The backscatter cloud probe—A compact low-profile autonomous optical spectrometer. Atmos. Meas. Tech. 2014, 7, 1443–1457. [Google Scholar] [CrossRef] [Green Version]
- Korolev, A.; Field, P.R. Assessment of the performance of the inter-arrival time algorithm to identify ice shattering artifacts in cloud particle probe measurements. Atmos. Meas. Tech. 2015, 8, 761–777. [Google Scholar] [CrossRef] [Green Version]
- Chepfer, H.; Cesana, G.; Winker, D.; Getzewich, B.; Vaughan, M.; Liu, Z. Comparison of two different cloud cli-matologies derived from CALIOP-attenuated backscattered measurements (level 1): The CALIPSO-ST and the CALIP-SO-GOCCP. J. Atmos. Ocean. Technol. 2013, 30, 725–744. [Google Scholar] [CrossRef] [Green Version]
- Stubenrauch, C.J.; Rossow, W.B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Maddux, B.C. Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX radiation panel. Bull. Am. Meteorol. Soc. 2013, 94, 1031–1049. [Google Scholar] [CrossRef]
- Wylie, D.P.; Menzel, W.P.; Woolf, H.M.; Strabala, K.I. Four Years of Global Cirrus Cloud Statistics Using HIRS. J. Clim. 1994, 7, 1972–1986. [Google Scholar] [CrossRef] [Green Version]
- Waliser, D.; Jiang, X. Tropical Meteorology and Climate|Intertropical Convergence Zone. Available online: http://climvar.org/jiang/pub/Duane_ATM2_00417.pdf (accessed on 30 December 2020).
- Eleftheratos, K.; Zerefos, C.S.; Varotsos, C.; Kapsomenakis, I. Interannual variability of cirrus clouds in the tropics in El Niño Southern Oscillation (ENSO) regions based on International Satellite Cloud Climatology Project (ISCCP) satellite data. Int. J. Remote Sens. 2011, 32, 6395–6405. [Google Scholar] [CrossRef]
- Virts, K.S.; Wallace, J.M. Annual, Interannual, and Intraseasonal Variability of Tropical Tropopause Transition Layer Cirrus. J. Atmos. Sci. 2010, 67, 3097–3112. [Google Scholar] [CrossRef] [Green Version]
- Eleftheratos, K.; Zerefos, C.S.; Zanis, P.; Balis, D.S.; Tselioudis, G.; Gierens, K.; Sausen, R. A study on natural and manmade global interannual fluctuations of cirrus cloud cover for the period 1984–2004. Atmos. Chem. Phys. Discuss. 2007, 7, 2631–2642. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lloyd, G.; Gallagher, M.; Choularton, T.; Krämer, M.; Andreas, P.; Baumgardner, D. In Situ Measurements of Cirrus Clouds on a Global Scale. Atmosphere 2021, 12, 41. https://doi.org/10.3390/atmos12010041
Lloyd G, Gallagher M, Choularton T, Krämer M, Andreas P, Baumgardner D. In Situ Measurements of Cirrus Clouds on a Global Scale. Atmosphere. 2021; 12(1):41. https://doi.org/10.3390/atmos12010041
Chicago/Turabian StyleLloyd, Gary, Martin Gallagher, Thomas Choularton, Martina Krämer, Petzold Andreas, and Darrel Baumgardner. 2021. "In Situ Measurements of Cirrus Clouds on a Global Scale" Atmosphere 12, no. 1: 41. https://doi.org/10.3390/atmos12010041
APA StyleLloyd, G., Gallagher, M., Choularton, T., Krämer, M., Andreas, P., & Baumgardner, D. (2021). In Situ Measurements of Cirrus Clouds on a Global Scale. Atmosphere, 12(1), 41. https://doi.org/10.3390/atmos12010041