Heatwaves in Kenya 1987–2016: Facts from CHIRTS High Resolution Satellite Remotely Sensed and Station Blended Temperature Dataset
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Description
- (1)
- CHTclim, a high-resolution (0.05° × 0.05°) monthly maximum temperature (Tmax) climatology developed with FAO station normals, ERA5 long-term average 2-m temperatures, latitude, longitude, and elevation as predictors using Moving Window Regression. The regression coefficient was individually generated for each location based on the density of the available data. Basically, a cubic function of the distance and a user-defined, regionally variable, maximum distance were used [36,38].
- (2)
- CHIRTmax, a high-resolution (0.05° × 0.05°) monthly time series based on remotely sensed infrared land surface emissions anomalies from GridSat B1 Thermal Infrared geostationary weather satellite observations.
- (3)
- CHTSmax, a high-resolution (0.05° × 0.05°) monthly time series of interpolated monthly Tmax anomalies fields based on Berkeley- Global Telecommunication System Tmax air temperature observations.
2.3. Methodology
- (a)
- The first stage consists of calculating the daily heatwave magnitude of each day () within the heatwave period (Equation (2)). () is assigned based on the normalized difference of the first and third quartile values of the time series of that particular day [21].
- (b)
- The calculation of heatwave magnitude of all heatwaves in a year or season: the magnitude of each individual heatwave within each year (Mhw) is defined as the sum of the daily magnitudes of the consecutive days composing a heatwave.
- (c)
- The third stage is the calculation of the HWMId. It is the maximum value of Mhw occurring within a given summer, which represents the largest heatwave in that year and then defined as HWMId at that grid point for that year.
3. Results
3.1. Heatwave Climatology
3.2. Heatwave Magnitude Index Daily (HWMId)
3.3. Heatwave Duration and Starting Dates Associated with the HWMId
3.4. Temporal Evolution and Recent Changes in Extreme Heatwave Events
4. Discussion and Conclusions
- (1)
- Contrary to the absence of heatwave records in official national and international disaster database about Kenya, this study gives evidence of heatwaves ranging from less severe (normal) to deadly (super-extreme) experienced between 1987 and 2016.
- (2)
- Heatwaves have recently become more severe and longer than before, with remarkable and fast spread in the spatial extent of heatwave affected areas during the most recent years.
- (3)
- CHIRTS-daily Tmax and HWMId were able to capture most critical heatwave events over the study period. They could be used for heatwave disaster emergency warning over short period as well as for long-term projection to provide insight for adaptation strategies. Future works should focus on future projections to inform adaptation policy decision makers.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dosio, A. Projection of temperature and heat waves for Africa with an ensemble of CORDEX Regional Climate Models. Clim. Dyn. 2017, 49, 493–519. [Google Scholar] [CrossRef] [Green Version]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis; Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Jiang, Z.-H.; Li, J.; Zhong, S.; Wang, L. Possible association of the western Tibetan Plateau snow cover with the decadal to interdecadal variations of northern China heatwave frequency. Clim. Dyn. 2012, 39, 2393–2402. [Google Scholar] [CrossRef]
- Harrington, L.J.; Otto, F.E.L. Reconciling theory with the reality of African heatwaves. Nat. Clim. Chang. 2020, 10, 796–798. [Google Scholar] [CrossRef]
- Ding, T.; Qian, W.; Yan, Z. Changes in hot days and heat waves in China during 1961-2007. Int. J. Clim. 2009, 30, 1452–1462. [Google Scholar] [CrossRef]
- Habeeb, D.; Vargo, J.; Stone, B. Rising heat wave trends in large US cities. Nat. Hazards 2015, 76, 1651–1665. [Google Scholar] [CrossRef]
- Schär, C.; Jendritzky, G. Climate change: Hot news from summer 2003. Nat. Cell Biol. 2004, 432, 559–560. [Google Scholar] [CrossRef]
- Eckstein, D.; Künzel, V.; Schäfer, L.; Winges, M. Global Climate Rate Index 2020 Who Suffers Most from Extreme Weather Events? Weather-Related Loss Events in 2018 and 1999 to 2018; Germanwatch: Bonn, Germany, 2020. [Google Scholar]
- Russo, S.; Marchese, A.F.; Sillmann, J.; Immé, G. When will unusual heat waves become normal in a warming Africa? Environ. Res. Lett. 2016, 11, 054016. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Nash, D.J.; Chase, B.M.; Grab, S.W.; Shanahan, T.M.; Verschuren, D.; Asrat, A.; Lézine, A.-M.; Umer, M. Temperature variability over Africa during the last 2000 years. Holocene 2013, 23, 1085–1094. [Google Scholar] [CrossRef] [Green Version]
- Ceccherini, G.; Russo, S.; Ameztoy, I.; Marchese, A.F.; Carmona-Moreno, C. Heat waves in Africa 1981–2015, observations and reanalysis. Nat. Hazards Earth Syst. Sci. 2017, 17, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Fontaine, B.; Janicot, S.; Monerie, P.-A. Recent changes in air temperature, heat waves occurrences, and atmospheric circulation in Northern Africa. J. Geophys. Res. Atmos. 2013, 118, 8536–8552. [Google Scholar] [CrossRef]
- Naik, M.; Abiodun, B.J. Projected changes in drought characteristics over the Western Cape, South Africa. Meteorol. Appl. 2020, 27, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Gasparrini, A.; Armstrong, B. The Impact of Heat Waves on Mortality. Epidemiology 2011, 22, 68–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, S.-L.; Wang, X.Y.; Guo, Y. Assessing the Short-Term Effects of Heatwaves on Mortality and Morbidity in Brisbane, Australia: Comparison of Case-Crossover and Time Series Analyses. PLoS ONE 2012, 7, e37500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herold, N.; Alexander, L.; Green, D.; Donat, M.G. Greater increases in temperature extremes in low versus high income countries. Environ. Res. Lett. 2017, 12, 034007. [Google Scholar] [CrossRef] [Green Version]
- Vizy, E.K.; Cook, K.H. Mid-Twenty-First-Century Changes in Extreme Events over Northern and Tropical Africa. J. Clim. 2012, 25, 5748–5767. [Google Scholar] [CrossRef]
- Chakraborty, D.; Sehgal, V.K.; Dhakar, R.; Ray, M.; Das, D.K. Spatio-temporal trend in heat waves over India and its impact assessment on wheat crop. Theor. Appl. Clim. 2019, 138, 1925–1937. [Google Scholar] [CrossRef]
- Frich, P.; Alexander, L.V.; Della-Marta, P.; Gleason, B.; Haylock, M.; Tank, A.M.G.K.; Peterson, T. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002, 19, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrão, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbosa, P.; Vogt, J.V. Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos. 2014, 119, 12–500. [Google Scholar] [CrossRef] [Green Version]
- Russo, S.; Sillmann, J.; Fischer, E.M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 2015, 10, 124003. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Peterson, S.; Shukla, S.; Davenport, F.; Michaelsen, J.; Knapp, K.R.; Landsfeld, M.; Husak, G.; Harrison, L.; et al. A High-Resolution 1983–2016 Tmax Climate Data Record Based on Infrared Temperatures and Stations by the Climate Hazard Center. J. Clim. 2019, 32, 5639–5658. [Google Scholar] [CrossRef]
- Xu, Z.; Fitzgerald, G.; Guo, Y.; Jalaludin, B.; Tong, S. Impact of heatwave on mortality under different heatwave definitions: A systematic review and meta-analysis. Environ. Int. 2016, 89–90, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.; Tong, S.; Rocklöv, J.; Forsberg, B.; et al. Mortality risk attributable to high and low ambient temperature: A multicountry observational study. Lancet 2015, 386, 369–375. [Google Scholar] [CrossRef]
- EM-DAT. The International Disaster Database. Available online: https://public.emdat.be/ (accessed on 3 October 2020).
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Caesar, J. Global land-based datasets for monitoring climatic extremes. Bull. Am. Meteorol. Soc. 2013, 94, 997–1006. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Seager, R.; Cane, M.A.; Lyon, B. The Annual Cycle of East African Precipitation. J. Clim. 2015, 28, 2385–2404. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, S.E. On the factors modulating the intensity of the tropical rainbelt over West Africa. Int. J. Clim. 2009, 29, 673–689. [Google Scholar] [CrossRef]
- Victor, O.; Chen, H.; Gao, C.; Sagero, P.O. Variability of temperature properties over Kenya based on observed and reanalyzed datasets. Theor. Appl. Clim. 2017, 133, 1175–1190. [Google Scholar] [CrossRef]
- Ayugi, B.O.; Tan, G. Recent trends of surface air temperatures over Kenya from 1971 to 2010. Theor. Appl. Clim. 2018, 131, 1401–1413. [Google Scholar] [CrossRef]
- ETCCDI Climate Change Indices. Available online: http://etccdi.pacificclimate.org/list_27_indices.shtml (accessed on 25 December 2020).
- Camberlin, P.; Moron, V.; Okoola, R.; Philippon, N.; Gitau, W. Components of rainy seasons’ variability in Equatorial East Africa: Onset, cessation, rainfall frequency and intensity. Theor. Appl. Clim. 2009, 98, 237–249. [Google Scholar] [CrossRef] [Green Version]
- Dobricic, S.; Russo, S.; Pozzoli, L.; Wilson, J.; Vignati, E. Increasing occurrence of heat waves in the terrestrial Arctic. Environ. Res. Lett. 2020, 15, 024022. [Google Scholar] [CrossRef]
- Ragatoa, D.S.; Ogunjobi, K.O.; Klutse, N.A.B.; Okhimamhe, A.A.; Eichie, J.O. A change comparison of heat wave aspects in climatic zones of Nigeria. Environ. Earth Sci. 2019, 78, 111. [Google Scholar] [CrossRef]
- Omondi, P.A.; Awange, J.L.; Forootan, E.; Ogallo, L.A.; Barakiza, R.; Girmaw, G.B.; Fesseha, I.; Kululetera, V.; Kilembe, C.; Mbati, M.M.; et al. Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010. Int. J. Clim. 2014, 34, 1262–1277. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ongoma, V.; Chen, H. Temporal and spatial variability of temperature and precipitation over East Africa from 1951 to 2010. Theor. Appl. Clim. 2017, 129, 131–144. [Google Scholar] [CrossRef]
- Verdin, A.; Funk, C.; Peterson, P.; Landsfeld, M.; Tuholske, C.; Grace, K. Development and validation of the CHIRTS-daily quasi-global high-resolution daily temperature data set. Sci. Data 2020, 7, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Climate Hazards Center CHIRTS-Daily. Available online: http://data.chc.ucsb.edu/products/CHIRTSdaily/ (accessed on 3 September 2020).
- WMO. WMO Statement on the Status of the Global Climate in 2012. WMO World Meteorol. Organ., no. 1108, p. WMO-No. 1108. 2016. Available online: https://library.wmo.int/index.php?lvl=author_see&id=1 (accessed on 25 December 2020).
Heatwave Category | Range |
---|---|
Normal | 1 ≤ HWMId < 2 |
Moderate | 2 ≤ HWMId < 3 |
Severe | 3 ≤ HWMId < 4 |
Extreme | 4 ≤ HWMId < 8 |
Very extreme | 8 ≤ HWMId < 16 |
Super extreme | 16 ≤ HWMId < 32 |
Ultra-extreme | HWMId ≥ 32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amou, M.; Gyilbag, A.; Demelash, T.; Xu, Y. Heatwaves in Kenya 1987–2016: Facts from CHIRTS High Resolution Satellite Remotely Sensed and Station Blended Temperature Dataset. Atmosphere 2021, 12, 37. https://doi.org/10.3390/atmos12010037
Amou M, Gyilbag A, Demelash T, Xu Y. Heatwaves in Kenya 1987–2016: Facts from CHIRTS High Resolution Satellite Remotely Sensed and Station Blended Temperature Dataset. Atmosphere. 2021; 12(1):37. https://doi.org/10.3390/atmos12010037
Chicago/Turabian StyleAmou, Martial, Amatus Gyilbag, Tsedale Demelash, and Yinlong Xu. 2021. "Heatwaves in Kenya 1987–2016: Facts from CHIRTS High Resolution Satellite Remotely Sensed and Station Blended Temperature Dataset" Atmosphere 12, no. 1: 37. https://doi.org/10.3390/atmos12010037
APA StyleAmou, M., Gyilbag, A., Demelash, T., & Xu, Y. (2021). Heatwaves in Kenya 1987–2016: Facts from CHIRTS High Resolution Satellite Remotely Sensed and Station Blended Temperature Dataset. Atmosphere, 12(1), 37. https://doi.org/10.3390/atmos12010037