Ozone Variation Trends under Different CMIP6 Scenarios
Abstract
:1. Introduction
2. Data and Models
3. Results
3.1. Verification of Model Data
3.2. Future Trend of Ozone Change
3.3. Variation Trend of Ozone in Tropic
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrews, D.G.; Holton, J.R.; Leovy, C.B. Middle Atmosphere Dynamics; Academic Press: San Diego, CA, USA; New York, NY, USA; Boston, FL, USA; London, UK; Sydney, New South Wales, Australia; Tokyo, Japan; Toronto, ON, Canada, 1987. [Google Scholar]
- Wofsy, S.C.; Elroy, M.B.; Yung, Y.L. The chemistry of atmospheric bromine. Geophys. Res. Lett. 1975, 2, 215–218. [Google Scholar] [CrossRef] [Green Version]
- Yung, Y.L.; Pinto, J.P.; Watson, R.T. Atmospheric Bromine and Ozone Perturbations in the Lower Stratosphere. J. Atmos. Sci. 1980, 37, 339–353. [Google Scholar] [CrossRef] [Green Version]
- Prather, M.J.; Mcelroy, M.B.; Wofsy, S.C. Reductions in ozone at high concentrations of stratospheric halogens. Nature 1984, 312, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Randel, W.J.; Wu, F. A stratospheric ozone profile data set for 1979–2005: Variability, trends, and comparisons with column ozone data. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Montzka, S.A.; Butler, J.H.; Myers, R.C.; Thompson, T.M.; Swanson, T.H.; Clarke, A.D.; Lock, L.T.; Elkins, J.W. Decline in the tropospheric abundance of halogen from halocarbons: Implications for stratospheric. Science 1996, 272, 1318–1322. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.; Russell, J.M.; Solomon, S. Halogen Occultation Experiment confirmation of stratospheric chlorine decreases in accordance with the Montreal Protocol. J. Geophys. Res. Atmos. 2000, 105, 4483–4490. [Google Scholar] [CrossRef]
- Newchurch, M.J. Evidence for slowdown in stratospheric ozone loss: First stage of ozone recovery. J. Geophys. Res. Atmos. 2003, 108, D16. [Google Scholar] [CrossRef] [Green Version]
- Randeniya, L.K.; Vohralik, P.F.; Plumb, I.C. Stratospheric ozone depletion at northern mid latitudes in the 21st century: The importance of future concentrations of greenhouse gases nitrous oxide and methane. Geophys. Res. Lett. 2002, 29, 101–104. [Google Scholar] [CrossRef]
- Rosenfield, J.E.; Douglass, A.R.; Considine, D.B. The impact of increasing carbon dioxide on ozone recovery. J. Geophys. Res. Atmos. 2002, 107, 7–9. [Google Scholar] [CrossRef]
- Brewer, A.W. Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Q. J. R. Meteorol. Soc. 1949, 75, 351–363. [Google Scholar] [CrossRef]
- Dobson, G.M.B. Origin and Distribution of the Polyatomic Molecules in the Atmosphere. Proc. R. Soc. Lond. 1956, 236, 187–193. [Google Scholar]
- Rind, D.; Suozzo, R.; Balachandran, N. Climate Change and the Middle Atmosphere. Part I: The Doubled CO2 Climate. J. Clim. 1990, 11, 475–494. [Google Scholar] [CrossRef] [Green Version]
- Rind, D.; Lerner, J.; Mclinden, C. Changes of tracer distributions in the doubled CO2 climate. J. Geophys. Res. Atmos. 2001, 106, 28061–28079. [Google Scholar] [CrossRef] [Green Version]
- Garcia, R.R.; Randel, W.J. Acceleration of the Brewer-Dobson Circulation due to Increases in Greenhouse Gases. J. Atmos. Sci. 2008, 65, 2731–2739. [Google Scholar] [CrossRef]
- McLandress, C.; Jonsson, A.I.; Plummer, D.A.; Reader, M.C.; Scinocca, J.F.; Shepherd, T.G. Separating the Dynamical Effects of Climate Change and Ozone Depletion. Part I: Southern Hemisphere Stratosphere. J. Clim. 2010, 23, 5002–5020. [Google Scholar] [CrossRef] [Green Version]
- Polvani, L.M.; Wang, L.; Aquila, V.; Waugh, D.W. The Impact of Ozone Depleting Substances on Tropical Upwelling, as Revealed by the Absence of Lower Stratospheric Cooling since the Late 1990s. J. Clim. 2016, 30, 2523–2534. [Google Scholar] [CrossRef] [Green Version]
- Polvani, L.M.; Abalos, M.; Garcia, R.; Kinnison, D.; Randel, W.J. Significant Weakening of Brewer-Dobson Circulation Trends over the 21st Century as a Consequence of the Montreal Protocol. Geophys. Res. Lett. 2017, 45, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Cionni, I.; Bodeker, G.E.; Charlton-Perez, A.J.; Kinnison, D.E.; Scinocca, J.F.; Waugh, D.W.; Akiyoshi, H.; Bekki, S.; Chipperfield, M.P.; et al. Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models. Atmos. Chem. Phys. 2010, 10, 9451–9472. [Google Scholar] [CrossRef] [Green Version]
- Chipperfield, M.P.; Feng, W. Comment on: Stratospheric Ozone Depletion at northern mid-latitudes in the 21st century: The importance of future concentrations of greenhouse gases nitrous oxide and methane. Geophys. Res. Lett. 2003, 30, 7. [Google Scholar] [CrossRef] [Green Version]
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous Oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgenstern, O.; Zeng, G.; Abraham, N.L.; Telford, P.J.; Braesicke, P.; Pyle, J.A.; Hardiman, S.C.; O’Connor, F.M.; Johnson, C.E. Correction to “Impacts of climate change, ozone recovery, and increasing methane on surface ozone and the tropospheric oxidizing capacity”. J. Geophys. Res. Atmos. 2014, 118, 1028–1041. [Google Scholar] [CrossRef]
- Kirner, O.; Ruhnke, R.; Sinnhuber, B.M. Chemistry-Climate Interactions of Stratospheric and Mesospheric Ozone in EMAC Long-Term Simulations with Different Boundary Conditions for CO2, CH4, N2O, and ODS. Atmos. Ocean 2015, 53, 140–152. [Google Scholar] [CrossRef]
- Egorova, T.A.; Rozanov, E.; Arsenovic, P.; Sukhodolov, T. Ozone Layer Evolution in the Early 20th Century. Atmosphere 2020, 11, 169. [Google Scholar] [CrossRef] [Green Version]
- Zubov, V.; Rozanov, E.; Egorova, T.; Karol, I.; Schmutz, W. Role of external factors in the evolution of the ozone layer and stratospheric circulation in 21st century. Atmos. Chem. Phys. Discuss. 2012, 13, 4697–4706. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Waugh, D.W.; Bodeker, G.E.; Cordero, E.; Akiyoshi, H.; Austin, J.; Beagley, S.R.; Boville, B.A.; Braesicke, P.; Brühl, C.; et al. Multimodel projections of stratospheric ozone in the 21st century. J. Geophys. Res. Atmos. 2007, 112, D16303. [Google Scholar] [CrossRef]
- Eyring, V.; Arblaster, J.M.; Cionni, I.; Sedlacek, J.; Perlwitz, J.; Young, P.J.; Bekki, S.; Bergmann, D.; Cameron-Smith, P.; Collins, W.J.; et al. Long-term ozone changes and associated climate impacts in CMIP5 simulations. J. Geophys. Res. Atmos. 2013, 118, 5029–5060. [Google Scholar] [CrossRef] [Green Version]
- Dhomse, S.S.; Kinnison, D.; Chipperfield, M.P.; Salawitch, R.J.; Cionni, I.; Hegglin, M.I.; Abraham, N.L.; Akiyoshi, H.; Archibald, A.T.; Bednarz, E.M.; et al. Estimates of Ozone Return Dates from Chemistry-Climate Model Initiative Simulations. Atmos. Chem. Phys. 2018, 18, 8409–8438. [Google Scholar] [CrossRef] [Green Version]
- Langematz, U. Future ozone in a changing climate. Comptes Rendus Geosci. 2018, 350, 403–409. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoentific Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; Vuuren, D.P. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Chang. 2014, 122, 387–400. [Google Scholar]
- Neill, B.C.; Tebaldi, C.; Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef] [Green Version]
- Neill, B.C.; Kriegler, E.; Ebi, K.L.; Benedict, E.K.; Riahi, K.; Rothman, D.S.; Ruijven, B.J.; Vuuren, D.P.; Birkmann, J.; Kok, K.; et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Chang. 2017, 42, 169–180. [Google Scholar]
- Riahi, K.; Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Berrisford, P.; Dee, D.P.; Poli, P.; Brugge, R.; Fielding, M.; Fuentes, M.; Kallberg, P.W.; Kobayashi, S.; Uppala, S.; Simmons, A. The ERA. ERA Rep. Ser. 2011, 2, 1–23. [Google Scholar]
- Boucher, O.; Servonnat, J.; Albright, A.L.; Aumont, O.; Balkanski, Y.; Bastrikov, V.; Bekki, S.; Bonnet, R.; Bony, S.; Bopp, L.; et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Modeling Earth Syst. 2020, 12, e2019MS002010. [Google Scholar] [CrossRef]
- Hourdin, F.; Rio, C.; Jam, A.; Traore, A.K.; Musta, I. Convective Boundary Layer Control of the Sea Surface Temperature in the Tropics. J. Adv. Modeling Earth Syst. 2020, 12, e2019MS001988. [Google Scholar] [CrossRef] [Green Version]
- Madec, G.; the NEMO System Team. NEMO Ocean Engine, Version 3.6 Stable. 2016. Available online: https://www.nemo-ocean.eu/doc/ (accessed on 20 January 2020).
- Krinner, G.; Viovy, N.; Noblet, D.N.; Ogée, J.; Polcher, J.; Friedlingstein, P.; Ciais, P.; Sitch, S.; Prentice, I.C. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 2005, 19, GB1015. [Google Scholar] [CrossRef]
- Yukimoto, S.; Koshiro, T.; Kawai, H.; Oshima, N.; Yoshida, K.; Urakawa, S.; Tsujino, H.; Deushi, M.; Tanaka, T.; Hosaka, M.; et al. MRI MRI-ESM2.0 Model Output Prepared for CMIP6 CMIP. Version 20200120. Earth System Grid Federation. 2019. Available online: https://doi.org/10.22033/ESGF/CMIP6.621 (accessed on 20 January 2020).
- Gettelman, A.; Hannay, C.; Bacmeister, J.T.; Neale, R.B.; Pendergrass, A.G.; Danabasoglu, G.; Lamarque, J.F.; Fasullo, J.T.; Bailey, D.A.; Lawrence, D.M.; et al. High Climate Sensitivity in the Community Earth System Model Version 2 (CESM2). Geophys. Res. Lett. 2019, 46, 8329–8337. [Google Scholar] [CrossRef]
- Knutti, R.; Masson, D.; Gettelman, A. Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett. 2013, 40, 1194–1199. [Google Scholar] [CrossRef]
- Newman, P.A.; Gleason, J.F.; Mcpeters, R.D.; Stolarski, R.S. Anomalously low ozone over the Arctic. Geophys. Res. Lett. 1997, 24, 2689–2692. [Google Scholar] [CrossRef]
- Manney, G.L.; Santee, M.L.; Rex, M.; Livesey, M.J.; Pitts, M.C.; Veefkind, P.; Nash, E.R.; Wohltmann, I.; Lehmann, R.; Froidevaux, L.; et al. Unprecedented Arctic ozone loss in 2011. Nature 2011, 478, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Dameris, M.; Loaola, D.; Nutzel, M.; Egbers, M.C.; Lerot, C.; Romahn, F.; Roozendael, M. First description and classification of the ozone hole over the Arctic in boreal spring 2020. Atmos. Chem. Phys. Discuss. 2020, 1–26. [Google Scholar] [CrossRef]
- Inness, A.; Chabrillat, S.; Flemming, J.; Huijnen, V.; Langenrock, B.; Nicolas, J.; Polichtchouk, I.; Razinger, M. Exceptionally low Arctic stratospheric ozone in spring 2020 as seen in the CAMS reanalysis. J. Geophys. Res. Atmos. 2020, 125, e2020JD033563. [Google Scholar] [CrossRef]
- Lawrence, Z.D.; Perlwitz, J.; Butler, A.H.; Manney, G.L.; Newman, P.A.; Lee, S.H.; Nash, E.R. The Remarkably Strong Arctic Stratospheric Polar Vortex of Winter 2020: Links to Record-Breaking Arctic Oscillation and Ozone Loss. J. Geophys. Res. Atmos. 2020, 125, e2020JD033271. [Google Scholar] [CrossRef]
- Rao, J.; Garfinkel, C.I. Arctic Ozone Loss in March 2020 and Its Seasonal Prediction in CFSv2: A Comparative Study with the 1997 and 2011 Cases. J. Geophys. Res. Atmos. 2020, 125, e2020JD033524. [Google Scholar] [CrossRef]
- Wohltmann, I.; Gathen, P.; Lehmann, R.; Maturilli, M.; Deckelmann, H.; Manney, G.L.; Davies, J.; Tarasick, D.; Jepsen, N.; Kivi, R.; et al. Near complete local reduction of Arctic stratospheric ozone by severe chemical loss in spring 2020. Geoph. Res. Lett. 2020, 47, e2020GL089547. [Google Scholar] [CrossRef]
- Manney, G.L.; Livesey, N.J.; Santee, M.L.; Froidevaux, L.; Lambert, A.; Lawrence, Z.; Millan, L.; Neu, J.L.; Read, W.G.; Schwartz, M.J.; et al. Record-Low Arctic Stratospheric Ozone in 2020: MLS Observations of Chemical Processes and Comparisons with Previous Extreme Winters. Geophys. Res. Lett. 2020, 47, e2020GL089063. [Google Scholar] [CrossRef]
- Solomon, S.; Haskins, J.; Ivy, D.J.; Min, F. Fundamental differences between Arctic and Antarctic ozone depletion. Proc. Natl. Acad. Sci. USA 2014, 111, 6220–6225. [Google Scholar] [CrossRef] [Green Version]
- Austin, J.; Wilson, R.J. Ensemble simulations of the decline and recovery of stratospheric ozone. J. Geophys. Res. Atmos. 2006, 111, D08301. [Google Scholar] [CrossRef] [Green Version]
- Bednarz, E.M.; Maycock, A.C.; Abraham, N.L.; Braesicke, P.; Dessens, O.; Pyle, J.A. Future Arctic ozone recovery: The importance of chemistry and dynamics. Atmos. Chem. Phys. 2016, 16, 12159–12176. [Google Scholar] [CrossRef] [Green Version]
- WMO (World Meteorological Organization). Scientific Assessment of Ozone Depletion: 2018; Global Ozone Research and Monitoring Project-Report: Geneva, Swizerland, 2018; Volume 58, p. 588. [Google Scholar]
- Pommereau, J.P.; Goutail, F.; Pazmino, A.; Lefevre, F.; Chipperfield, M.P.; Feng, W.H.; Roozendael, M.V.; Jepsen, N.; Hansen, G.; Kivi, R.; et al. Recent Arctic ozone depletion: Is there an impact of climate change? Comptes Rendus Geosci. 2018, 350, 347–353. [Google Scholar] [CrossRef]
- Langematz, U.; Meul, S.; Grunow, K.; Romanowsky, E.; Oberlander, S.; Abalichin, J.; Kubin, A. Future Arctic temperature and ozone: The role of stratospheric composition changes. J. Geophys. Res. Atmos. 2014, 119, 2092–2112. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, W.; Xie, F.; Pyle, J.A.; Keeble, J.; Wang, T. The influence of zonally asymmetric stratospheric ozone changes on the Arctic polar vortex shift. J. Clim. 2020, 33, 4641–4658. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.E.; Collins, W.J.; Stevenson, D.S.; Derwent, R.G. Relative roles of climate and emissions changes on future tropospheric oxidant concentrations. J. Geophys. Res. Atmos. 1999, 104, 18631–18645. [Google Scholar] [CrossRef] [Green Version]
- Zeng, G.; Pyle, J.A.; Young, P.J. Impact of climate change on tropospheric ozone and its global budgets[J]. Atmos. Chem. Phys. Discuss. 2008, 8, 369–387. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, D.S.; Dentener, F.J.; Schultz, M.G.; Ellingsen, K.; Noije, T.P.; Wild, O.; Zeng, G.; Amann, M.; Atherton, C.S.; Bell, N.; et al. Multimodel ensemble simulations of present-day and near-future tropospheric ozone. J. Geophys. Res. 2006, 111, D08301. [Google Scholar] [CrossRef] [Green Version]
- Young, P.L.; Archibald, A.T.; Bowman, K.W.; Lamarque, J.F.; Naik, V.; Stevenson, D.S.; Tilmes, S.; Voulgarakis, A.; Wild, O.; Bergmann, D. Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 2013, 13, 2063–2090. [Google Scholar] [CrossRef] [Green Version]
Model | SSP1-2.6 | SSP2-4.5 | SSP3-7.0 | SSP5-8.5 |
---|---|---|---|---|
IPSL | −0.64 | −0.25 | 0.91 | 0.4 |
MRI-ESM2 | −1.53 | −1.44 | −0.08 | −0.88 |
CESM-WACCM | −0.77 | −0.46 | 0.57 | 0.07 |
Model | SSP1-2.6 | SSP2-4.5 | SSP3-7.0 | SSP5-8.5 |
---|---|---|---|---|
IPSL | 0.28 | 0.19 | 0.36 | 0.33 |
MRI-ESM2 | −0.44 | −0.73 | −0.4 | −0.71 |
CESM-WACCM | 0.21 | 0.06 | 0.26 | 0.09 |
Model | SSP1-2.6 | SSP2-4.5 | SSP3-7.0 | SSP5-8.5 |
---|---|---|---|---|
IPSL | −0.92 | −0.44 | 0.55 | 0.07 |
MRI-ESM2 | −1.10 | −0.72 | 0.32 | −0.17 |
CESM-WACCM | −0.98 | −0.52 | 0.3 | −0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, L.; Luo, J.; Wang, C. Ozone Variation Trends under Different CMIP6 Scenarios. Atmosphere 2021, 12, 112. https://doi.org/10.3390/atmos12010112
Shang L, Luo J, Wang C. Ozone Variation Trends under Different CMIP6 Scenarios. Atmosphere. 2021; 12(1):112. https://doi.org/10.3390/atmos12010112
Chicago/Turabian StyleShang, Lin, Jiali Luo, and Chunxiao Wang. 2021. "Ozone Variation Trends under Different CMIP6 Scenarios" Atmosphere 12, no. 1: 112. https://doi.org/10.3390/atmos12010112
APA StyleShang, L., Luo, J., & Wang, C. (2021). Ozone Variation Trends under Different CMIP6 Scenarios. Atmosphere, 12(1), 112. https://doi.org/10.3390/atmos12010112