Rivera Martinez, R.; Santaren, D.; Laurent, O.; Cropley, F.; Mallet, C.; Ramonet, M.; Caldow, C.; Rivier, L.; Broquet, G.; Bouchet, C.;
et al. The Potential of Low-Cost Tin-Oxide Sensors Combined with Machine Learning for Estimating Atmospheric CH4 Variations around Background Concentration. Atmosphere 2021, 12, 107.
https://doi.org/10.3390/atmos12010107
AMA Style
Rivera Martinez R, Santaren D, Laurent O, Cropley F, Mallet C, Ramonet M, Caldow C, Rivier L, Broquet G, Bouchet C,
et al. The Potential of Low-Cost Tin-Oxide Sensors Combined with Machine Learning for Estimating Atmospheric CH4 Variations around Background Concentration. Atmosphere. 2021; 12(1):107.
https://doi.org/10.3390/atmos12010107
Chicago/Turabian Style
Rivera Martinez, Rodrigo, Diego Santaren, Olivier Laurent, Ford Cropley, Cécile Mallet, Michel Ramonet, Christopher Caldow, Leonard Rivier, Gregoire Broquet, Caroline Bouchet,
and et al. 2021. "The Potential of Low-Cost Tin-Oxide Sensors Combined with Machine Learning for Estimating Atmospheric CH4 Variations around Background Concentration" Atmosphere 12, no. 1: 107.
https://doi.org/10.3390/atmos12010107
APA Style
Rivera Martinez, R., Santaren, D., Laurent, O., Cropley, F., Mallet, C., Ramonet, M., Caldow, C., Rivier, L., Broquet, G., Bouchet, C., Juery, C., & Ciais, P.
(2021). The Potential of Low-Cost Tin-Oxide Sensors Combined with Machine Learning for Estimating Atmospheric CH4 Variations around Background Concentration. Atmosphere, 12(1), 107.
https://doi.org/10.3390/atmos12010107