Better Agronomic Management Increases Climate Resilience of Maize to Drought in Tanzania
Abstract
:1. Introduction
2. Method
2.1. Study Area
2.2. Data
2.2.1. National Maize Production and Yield Data
2.2.2. Farm Survey
2.3. Crop Model Simulation
2.4. Analysis
3. Results and Discussion
3.1. Simulated Smallholder Maize Production in Tanzania
3.2. Importance of Rainfall on Tanzania’s Maize Production
3.3. Better Management Practices Increase National Productivity
3.4. Better Management Practices Decrease the Prevalence of Poor Harvest
3.5. Drought-Related Risks under Improved Management Practices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Jama, B.; Pizarro, G. Agriculture in Africa: Strategies to improve and sustain smallholder production systems. Ann. N. Y. Acad. Sci. 2008, 1136, 218–232. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, P.A. Swaminathan MS Cutting world hunger in half. Science 2005, 37, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Jayne, T.S.; Chamberlin, J.; Headey, D.D. Land pressures, the evolution of farming systems, and development strategies in Africa: A synthesis. Food Policy 2014, 48, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Van der Velde, M.; Folberth, C.; Balkovič, J.; Ciais, P.; Fritz, S.; Janssens, I.A.; Obersteiner, M.; See, L.; Skalský, R.; Xiong, W.; et al. African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption. Globle Chang. Biol. 2014, 20, 1278–1288. [Google Scholar] [CrossRef] [PubMed]
- Conway, G.; Toenniessen, G. Science for African food security. Science 2015, 299, 1187–1188. [Google Scholar] [CrossRef] [PubMed]
- Grow Africa. The Patient Procurement Platform: Diagnosing Risk in Tanzania. 2016. Available online: http://www.growafrica.com (accessed on 20 February 2020).
- Bleggi, S. Learning from U.S. Nutrition Investments in Tanzania: Progress and Partnerships. Bread for the World Institute, 2014. Available online: http://www.bread.org/sites/default/files/downloads/briefing-paper-25.pdf (accessed on 5 March 2020).
- Smale, M.; Dyerlee, D.; Jayne, T. Maize revolutions in Sub-Saharan Africa. In An African Green Revolution; Otsuka, K., Larson, D.F., Eds.; Springer: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef] [Green Version]
- Cairns, J.E.; Hellin, J.; Sonder, K.; Araus, J.L.; MacRobert, J.F.; Thierfelder, C.; Prasanna, B.M. Adapting maize production to climate change in sub-Saharan Africa. Food Secur. 2013, 5, 345–360. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. 2014. Available online: http://www.fao.org/faostat/en/#home (accessed on 23 August 2018).
- Shiferaw, B.; Prasanna, B.; Hellin, J.; Banziger, M. Crop that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur. 2011, 3, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Elagib, N.A. Drought risk during the early growing season in Sahelian Sudan. Nat. Hazards 2015, 79, 1549–1566. [Google Scholar] [CrossRef]
- Fisher, M.; Abate, T.; Lunduka, R.W.; Asnake, W.; Alemayehu, Y.; Madulu, R.B. Drought tolerant maize for farmer adaptation to drought in sub-Saharan Africa: Determinants of adoption in eastern and southern Africa. Clim. Chang. 2015, 133, 283–299. [Google Scholar] [CrossRef] [Green Version]
- La Roverre, R.; Kostandini, G.; Abdoulaye, T.; Dixon, J.; Mwangi, W.; Guo, Z.; Bänziger, M. Potential Impact of Investments in Drought Tolerant Maize in Africa; CIMMYT: Addis Ababa, Ethiopia, 2010. [Google Scholar]
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D.; et al. Agriculture, Sustainable Intensification in agriculture: Premises and policies. Science 2013, 341, 33–34. [Google Scholar] [CrossRef]
- Thompson, W. Analysing Agricultural Technology Adoption by Smallholder Farmers in Tanzania: Optimising Interventions to Reduce Poverty and Huger. Master’s Thesis, Imperial College London, London, UK, 2015. [Google Scholar]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.I. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Balsomo, G.; Albergl, C.; Beljaars, A.; Bourssetta, S.; Brun, E.; Cloke, H.; Dee, D.; Dutra, E.; Munoz-Sbater, J.; Pappenberger, F.; et al. ERA-Interim/Land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci. 2015, 19, 389–407. [Google Scholar] [CrossRef] [Green Version]
- Burton, C.; Rifai, S.; Malhi, Y. Inter-comparison and assessment of gridded climate products over tropical forests during the 2015/2016 El Nino. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170406. [Google Scholar] [CrossRef] [Green Version]
- Acadia, C.; Mariani, S.; Casaioli, M.; Lavagnini, A.; Speranza, A. Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids. Am. Meteorol. Soc. 2003, 18, 918–932. [Google Scholar] [CrossRef]
- Batjes, H.N. A Homogenized Soil Data File for Global Environmental Research: A Subset of FAO. ISRIC and NRCS Profiles (Version 1.0); Working Paper and Preprint 95/10b; International Soil Reference and Information Centre: Wageningen, The Netherlands, 1995. [Google Scholar]
- FAO. Soil Units of the Soil Map of the World; FAO-UNESCO-ISRIC: Rome, Italy, 1990. [Google Scholar]
- Schaap, M.G.; Bouten, W. Modeling water retention curves of sandy soils using neural networks. Water Resour. Res. 1996, 32, 3033–3040. [Google Scholar] [CrossRef]
- Boogaart, H.L.; Van Diepen, C.A.; Rotter, R.P.; Cabrera, J.M.; Van Laar, H.H. Useŕs Guide for the WOFOST 7.1 Crop Growth Simulation Model and WOFOST Control Center 1.5; Technical Document; DLO Winand Staring Center: Wageningen, The Netherlands, 1998; p. 141. [Google Scholar]
- Sacks, W.J.; Derying, D.; Foley, J.A.; Ramankutty, N. Crop planting dates: An analysis of global patterns. Glob. Ecol. Biogeogr. 2010, 19, 607–620. [Google Scholar] [CrossRef]
- Müeller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef]
- Rao, K.P.C.; Sridhar, G.; Mulwa, R.M.; Kilavi, M.N.; Esilaba, A.; Athanasiadis, I.N.; Valdivia, R.O. Impacts of Climate Change Variability and Change on Agricultural Systems in East Africa. In Handbook of Climate Change and Agroecosystems; Rosenzweig, C., Hillel, D., Eds.; Imperial College Press: London, UK, 2015. [Google Scholar] [CrossRef]
- Kajumula, M.S.; Lawrence, R.C.; Donald, T.S.; Nyambilila, A. Maize cultivar specific parameters for Decision Support System for Agrotechnology Transfer (DSSAT) application in Tanzania. Am. J. Plant Sci. 2014, 821–833. [Google Scholar] [CrossRef] [Green Version]
- Waongo, M.; Laux, P.; Kunstmann, K. Adaptation to climate change: The impacts of optimized planting dates on attainable maize yields under rainfed conditions in Burkina Faso. Agric. For. Meteorol. 2015, 205, 23–29. [Google Scholar] [CrossRef] [Green Version]
- You, L.; Wood, S. An entropy approach to spatial disaggregation of agricultural production. Agric. Syst. 2006, 90, 329–347. [Google Scholar] [CrossRef]
- Harvey, C.A.; Rakotobe, Z.L.; Rao, N.S.; Dave, R.; Razafimahatratra, H.; Rabarijohn, R.H.; Rajaofara, H.; MacKinnon, J.L. Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar. Philos. Trans. R. Soc. B 2014, 389, 20130089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassie, M.; Jaleta, M.; Shiferaw, B.; Mmbando, F.; Mekuria, M. Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania. Technol. Forecast. Soc. Chang. 2013, 80, 525–540. [Google Scholar] [CrossRef]
- Morton, J.F. The impact of climate change on smallholder and subsistence agriculture. Proc. Natl. Acad. Sci. USA 2007, 104, 19680–19685. [Google Scholar] [CrossRef] [Green Version]
- Rowhani, P.; Lobell, D.B.; Linderman, M.; Ramankutty, N. Climate variability and crop production in Tanzania. Agric. For. Meteorol. 2011, 151, 449–460. [Google Scholar] [CrossRef]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate variation explains a third of global crop yield availability. Nat. Commun. 2014, 6, 5989. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.A.; Diffenbaugh, N.S.; Hertel, T.W.; Lobell, D.B.; Ramankutty, N.; Rios, A.R.; Rowhani, P. Climate volatility and poverty vulnerability in Tanzania. Glob. Environ. Chang. 2011, 21, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–88. [Google Scholar] [CrossRef]
- Bello, O.B.; Olaoye, G. Analysis of grain yield and agronomic characteristics in drought-tolerant maize varieties belonging to two maturing groups. World Res. J. Agric. Biotechnol. 2012, 1, 10–13. [Google Scholar]
- Westengen, O.T.; Brysting, A.K. Crop adaptation to climate change in the semi-arid zone in Tanzania: The role of genetic resources and seed systems. Agric. Food Secur. 2014, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Kotschi, J. A Soiled Reputation: Adverse Impacts of Mineral Fertilizers in Tropical Agricultural; Heinrich Böll Foundation: Berlin, Germany, 2013. [Google Scholar]
- Brenda, W. Millions of smallholders in Africa benefit from climate resilient drought-tolerant maize. Appropr. Technol. 2006, 43, 30–31. [Google Scholar]
ID | Technology Strategy | Cultivar Trait—Drought Tolerance | Cultivar Maturity Group | N Fertilizer Application Amount (kg/ha) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Without | With | Short (120 Days) | Middle (140 Days) | Long (160 Days) | 0 | 30 | 60 | 90 | ||
a | Historical | x | x | x | ||||||
b | Short-N60 | x | x | x | ||||||
c | Short-N90 | x | x | x | ||||||
d | Short-N120 | x | x | x | ||||||
e | Middle-N60 | x | x | x | ||||||
f | Middle-N90 | x | x | x | ||||||
g | Middle-N120 | x | x | |||||||
h | Long-N60 | x | x | x | ||||||
i | Long-N90 | x | x | x | ||||||
j | Long-N120 | x | x | x | ||||||
k | D-Short-N60 | x | x | x | ||||||
l | D-Short-N90 | x | x | x | ||||||
m | D-Short-N120 | x | x | x | ||||||
n | D-Middle-N60 | x | x | x | ||||||
o | D-Middle-N90 | x | x | x | ||||||
p | D-Middle-N120 | x | x | x | ||||||
q | D-Long-N60 | x | x | x | ||||||
r | D-Long-N90 | x | x | x | ||||||
s | D-Long-N120 | x | x | x |
Maturity Group | Fertilizer Input (kg/ha) | ID | Mean Yield (kg/ha) | Minimum Yield (kg/ha) | Poor Harvest Rates (Percentage/Count) | Occurrence Rate (%) | ID | Mean Yield (kg/ha) | Minimum Yield (kg/ha) | Poor Harvest Rates (Percentage/Count) | Occurrence Rate (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
Without Drought Resistance Varieties | With Drought Resistance Varieties | ||||||||||
Current | 0 | a | 1247 | 707 | 80% (7494) | 33.1 | - | - | - | - | - |
Short | 60 | b | 2319 | 1504 | 24% (1765) | 12.0 | k | 2332 | 1608 | 18% (1383) | 12.4 |
90 | c | 2325 | 1496 | 23% (1723) | 12.4 | l | 2350 | 1633 | 17% (1294) | 12.6 | |
120 | d | 2324 | 1484 | 23% (1700) | 12.8 | m | 2357 | 1645 | 16% (1212) | 12.9 | |
Middle | 60 | e | 3923 | 1658 | 45% (3371) | 12.3 | n | 4078 | 1961 | 33% (2457) | 12.5 |
90 | f | 3999 | 1725 | 44% (3318) | 11.9 | o | 4210 | 2031 | 33% (2475) | 12.1 | |
120 | g | 4013 | 1725 | 44% (3289) | 11.9 | p | 4238 | 2038 | 34% (2539) | 11.9 | |
Long | 60 | h | 5224 | 2583 | 21% (1570) | 12.7 | q | 5162 | 2813 | 24% (1804) | 13.1 |
90 | i | 5559 | 2540 | 25% (1865) | 11.9 | r | 5801 | 2926 | 24% (1810) | 13.0 | |
120 | j | 5833 | 2528 | 25% (1837) | 12.1 | s | 6172 | 2930 | 23% (1749) | 13.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, W.; Tarnavsky, E. Better Agronomic Management Increases Climate Resilience of Maize to Drought in Tanzania. Atmosphere 2020, 11, 982. https://doi.org/10.3390/atmos11090982
Xiong W, Tarnavsky E. Better Agronomic Management Increases Climate Resilience of Maize to Drought in Tanzania. Atmosphere. 2020; 11(9):982. https://doi.org/10.3390/atmos11090982
Chicago/Turabian StyleXiong, Wei, and Elena Tarnavsky. 2020. "Better Agronomic Management Increases Climate Resilience of Maize to Drought in Tanzania" Atmosphere 11, no. 9: 982. https://doi.org/10.3390/atmos11090982
APA StyleXiong, W., & Tarnavsky, E. (2020). Better Agronomic Management Increases Climate Resilience of Maize to Drought in Tanzania. Atmosphere, 11(9), 982. https://doi.org/10.3390/atmos11090982