Natural Seepage of Methane and Light Alkanes at Three Locations in Southern California
Abstract
:1. Introduction
2. Experiments
2.1. Description of Sampling Sites
2.2. Sample Collection and Analysis
3. Results and Discussion
3.1. Overview
3.2. Gas Ratios
3.3. Ojai Comparison
3.4. Anthropogenic Versus Natural Seepage
3.5. Implications and Future Directions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abrams, M.A. Evaluation of Near-surface Gases in Marine Sediments to Assess Subsurface Petroleum Gas Generation and Entrapment. Geosciences 2017, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- Etiope, G.; Klusman, R.W. Geologic Emissions of Methane to the Atmosphere. Chemosphere 2002, 49, 777–789. [Google Scholar] [CrossRef]
- Kvenvolden, K.A.; Rogers, B.W. Gaia’s Breath–global methane exhalations. Mar. Pet. Geol. 2005, 22, 579–590. [Google Scholar] [CrossRef]
- Etiope, G. Natural Gas Seepage: The Earth’s Hydrocarbon Degassing, 1st ed.; Springer International Publishing: New York, NY, USA, 2015. [Google Scholar]
- Abrams, M.A. Significance of hydrocarbon seepage relative to subsurface petroleum generation and entrapment. Mar. Pet. Geol. 2005, 22, 457–477. [Google Scholar] [CrossRef]
- Benedict, K.B.; Zhou, Y.; Sive, B.C.; Prenni, A.J.; Gebhart, K.A.; Fischer, E.V.; Evanoski-Cole, A.; Sullivan, A.P.; Callahan, S.; Schichtel, B.A.; et al. Volatile organic compounds and ozone in Rocky Mountain National Park during FRAPPE. Atmos. Chem. Phys. 2019, 19, 499–521. [Google Scholar] [CrossRef] [Green Version]
- McDuffie, E.E.; Edwards, P.M.; Gilman, J.B.; Lerner, B.M.; Dubé, W.P.; Trainer, M.; Wolfe, D.E.; Angevine, W.M.; De Gouw, J.; Williams, E.J.; et al. Influence of Oil and Gas Emissions on Summertime Ozone in the Colorado Northern Front Range. J. Geophys. Res. Atmos. 2016, 121, 8712–8729. [Google Scholar] [CrossRef] [Green Version]
- Etiope, G. Natural Emissions of Methane from Geological Seepage in Europe. Atmos. Environ. 2009, 43, 1430–1443. [Google Scholar] [CrossRef]
- Etiope, G.; Nakada, R.; Tanaka, K.; Yoshida, N. Gas Seepage from Tokamachi Mud Volcanoes, Onshore Niigata Basin (Japan): Origin, Post-genetic Alterations and CH4–CO2 Fluxes. Appl. Geochem. 2011, 26, 348–359. [Google Scholar] [CrossRef]
- Etiope, G. Methane Uncovered. Nat. Geosci. 2012, 5, 373–374. [Google Scholar] [CrossRef]
- Etiope, G.; Ciccioli, P. Earth’s Degassing: A Missing Ethane and Propane Source. Science 2009, 323, 478. [Google Scholar] [CrossRef]
- Etiope, G.; Doezema, L.A.; Pacheco, C. Emission of Methane and Heavier Alkanes from the La Brea Tar Pits Seepage Area, Los Angeles. J. Geophys. Res. 2017, 122, 12008–12019. [Google Scholar] [CrossRef]
- Weber, D.; Marquez, B.A.; Taylor, C.; Raya, P.; Contreras, P.; Howard, D.; Doezema, L.A. Macroseepage of Methane and Light Alkanes at the La Brea Tar Pits in Los Angeles. J. Atmos. Chem. 2017, 74, 339–356. [Google Scholar] [CrossRef]
- Gilman, J.B.; Lerner, B.M.; Kuster, W.C.; de Gouw, J.A. Source Signatures of Volatile Organic Compounds from Oil and Natural Gas Operations in Northeastern Colorado. Environ. Sci. Technol. 2013, 47, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Swarthout, R.F.; Russo, R.S.; Zhou, Y.; Hart, A.H.; Sive, S.C. Volatile organic compound distributions during the NACHTT campaign at the Boulder Atmospheric Observatory: Influence of urban and natural gas sources. J. Geophys. Res. Atmos. 2013, 118, 10614–10637. [Google Scholar] [CrossRef]
- Wennberg, P.O.; Mui, W.; Wunch, D.; Kort, E.A.; Blake, D.R.; Atlas, E.L.; Santoni, G.W.; Wofsy, S.C.; Diskin, G.S.; Jeong, S.; et al. On the Sources of Methane to the Los Angeles Atmosphere. Environ. Sci. Technol. 2012, 46, 9282–9289. [Google Scholar] [CrossRef]
- Jeffrey, A.W.A.; Alimi, H.M.; Jenden, P.D. Geochemistry of Los Angeles Basin Oil and Gas Systems. In M 52: Active Margin Basins, 1st ed.; AAPG: Oklahoma, OK, USA, 1991; pp. 197–219. [Google Scholar]
- Kvenvolden, K.A.; Weliky, K.; Nelson, H.; DesMarais, D.J. Submarine seep of carbon dioxide in Norton Sound Alaska. Science 1979, 205, 1264–1266. [Google Scholar] [CrossRef]
- Igari, S.-I.; Maekawa, T.; Suzuki, Y. Pentane and hexane isomers in natural gases from oil and gas fields in Akita, Niigata and Hokkaido, Japan: Determination factor in their isomer ratios. Geochem. J. 2007, 41, 57–63. [Google Scholar] [CrossRef]
- Das, N.; Chandran, P. Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnol. Res. Int. 2011, 2011, 941810. [Google Scholar] [CrossRef] [Green Version]
- Coleman, D.D.; Meents, W.F.; Liu, C.L.; Keough, R.A. Isotopic Identification of Leakage Gas from Underground Storage Reservoirs: A Progress Report; Illinois State Geological Survey: Illinois Petroleum, IL, USA, 1977; Volume 111, pp. 1–10. [Google Scholar]
- Wilkerson, G. Walking Tour Carpinteria Oil Seeps Santa Barbara, California. Available online: https://www.academia.edu/37644752 (accessed on 3 November 2019).
- Annual Reports of the State Supervisor of Oil and Gas. Report of California Oil and Gas Production Statistics, 2018; California Department of Conservation: Sacramento, CA, USA, 2018. [Google Scholar]
- Leifer, I. A synthesis review of emissions and fates for the coal oil point marine hydrocarbon seep field and California marine seepage. Geofluids 2019, 2019, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Church, C.C. The McKittrick Tar Seeps. Geology and Oil Fields, West Side Southern San Joaquin Valley; American Association of Petroleum Geologists: Tulsa, OK, USA, 1968. [Google Scholar]
- Taff, J.A. Geology of McKittrick Oil Field and Vicinity, Kern County, California. Bull. AAPG 1933, 17, 1–15. [Google Scholar]
- California Departments of Conservation, Well Finder. Available online: https://www.conservation.ca.gov/calgem/Pages/Wellfinder.aspx (accessed on 11 March 2020).
- Fox-Dobbs, K.; Dundas, R.; Trayler, R.; Holroyd, P. Paleoecological Implications of New Magafaunal 14C Ages from the McKittrick Tar Seeps, California. J. Vertebr. Paleontol. 2014, 34, 220–223. [Google Scholar] [CrossRef]
- Huftile, G.J. Thin-skinned tectonics of the Upper Ojai Valley and Sulphur Mountain area, Ventura Basin, California. Am. Assoc. Pet. Geol. Bull. 1991, 75, 1353–1373. [Google Scholar]
- Davis, T.L.; Namson, J.S.; Gordon, S.A. Ventura Basin Oil Fields: Structural Setting and Petroleum System. In Proceedings of the Joint Annual Meeting of PSAAPG & Coast Geologic Society, Oxnard, CA, USA, 2–8 May 2015. [Google Scholar]
- Wilkerson, G. Geology and Oil Development History of the Ventura Basin Field Guide: 2018 Edition. Available online: https://www.academia.edu/31781887 (accessed on 3 November 2019).
- Duffy, M.; Kinnaman, F.S.; Valentine, D.L.; Keller, E.A.; Clark, J.F. Gaseous emission rates from natural petroleum seeps in the upper Ojai Valley, California. Environ. Geosci. 2007, 14, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Doezema, L.A.; Bigley, C.; Canzi, G.; Chang, K.; Hirning, A.J.; Lee, J.; Von der Ahe, N. The influence of sampling protocol on non-methane hydrocarbons in Los Angeles. Atmos. Environ. 2010, 44, 900–908. [Google Scholar] [CrossRef]
- Roberts, H.; Carney, R.S. Evidence of episodic fluid, gas, and sediment venting on the northern Gulf of Mexico continental slope. Econ. Geol. 1997, 92, 863–879. [Google Scholar] [CrossRef]
- Zumberge, J.; Ferworn, K.; Brown, S. Isotopic reversal (‘rollover’) in shale gases produced from the Mississippian Barnett and Fayetteville formations. Mar. Pet. Geol. 2012, 31, 43–52. [Google Scholar] [CrossRef]
- Rossabi, S.; Helmig, D. Changes in atmospheric butanes and pentanes and their isomeric ratios in the continental United States. J. Geophys. Res. Atmos. 2018, 123, 3772–3790. [Google Scholar] [CrossRef]
- Zhongying, M.; Jianfa, C.; Jing, W.; Guannan, W.; Chen, Z.; Wei, L. Application of butane geochemistry of natural gas in hydrocarbon exploration. Pet. Sci. 2012, 9, 455–462. [Google Scholar]
- Thompson, C.R.; Hueber, J.; Helmig, D. Influence of oil and gas emissions on ambient atmospheric non-methane hydrocarbons in residential areas of Northeastern Colorado. Elem.-Sci. Anthr. 2014, 3, 4707–4715. [Google Scholar] [CrossRef] [Green Version]
- Swarthout, R.F.; Russo, R.S.; Zhou, Y.; Miller, B.M.; Mitchell, B.L.; Horsman, E.; Lipsky, E.M.; McCabe, D.C.; Baum, E.; Sive, B.C. Impact of Marcellus Shale natural gas development in Southwestern Pennsylvania on volatile organic compound emissions and regional air quality. Environ. Sci. Tech. 2015, 49, 3175–3184. [Google Scholar] [CrossRef]
- Prenni, A.J.; Day, D.E.; Evanoski-Cole, A.R.; Sive, B.C.; Hecobian, A.; Zhou, Y.; Gebhart, K.A.; Hand, J.L.; Sullivan, A.P.; Li, Y.; et al. Oil and gas impacts on air quality in federal lands in the Bakken region: An overview of the Bakken Air Quality Study and first results. Atmos. Chem. Phys. 2016, 16, 1401–1416. [Google Scholar] [CrossRef] [Green Version]
- Benedict, K.B.; Prenni, A.J.; El-Sayed, M.M.H.; Hecobian, A.; Zhou, Y.; Gebhart, K.A.; Sive, B.C.; Schichtel, B.A.; Collett, J.L. Volatile organic compounds and ozone at four national parks in the southwestern United States. Atmos. Environ. 2020, 239, 117783. [Google Scholar] [CrossRef]
- McKain, K.; Down, A.; Raciti, S.M.; Budney, J.; Hutyra, L.R.; Floerchinger, C.; Herndon, S.C.; Nehrkorn, T.; Zahniser, M.S.; Jackson, R.B.; et al. Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts. Proc. Natl. Acad. Sci. USA 2015, 112, 1941–1946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peischl, J.; Eilerman, S.J.; Neuman, J.A.; Aikin, K.C.; de Gouw, J.; Gilman, J.B.; Herndon, S.C.; Nadkarni, R.; Trainer, M.; Warneke, C.; et al. Quantifying methane and ethane emissions to the atmosphere from central and western U.S. oil and natural gas production regions. J. Geophys. Res. Atmos. 2018, 123, 7725–7740. [Google Scholar] [CrossRef]
- Genter, D.R.; Harley, R.A.; Miller, A.M.; Goldstein, A.H. Diurnal and seasonal variability of gasoline-related volatile organic compound emissions in Riverside, California. Environ. Sci. Tech. 2009, 43, 4247–4252. [Google Scholar] [CrossRef] [PubMed]
- George, S.C.; Boreham, C.J.; Minifie, S.A.; Teerman, S.C. The effect of minor to moderate biodegradation on C5 to C9 hydrocarbons in crude oils. Org. Geochem. 2002, 33, 1293–1317. [Google Scholar] [CrossRef]
Location | Sample | Methane | Ethane | Propane | i-Butane | n-Butane | i-Pentane | n-Pentane |
---|---|---|---|---|---|---|---|---|
McKittrick | 1 | 590 | 0.27 | 0.37 | 0.052 | 0.095 | 0.13 | 0.19 |
McKittrick | 3 | 10.6 | 1.8 | 2.9 | 0.61 | 0.66 | 0.88 | 1.3 |
McKittrick | 4 | 360 | 0.92 | 3.7 | 0.88 | 0.71 | 0.88 | 1.1 |
McKittrick | 5 | 8200 | 20 | 1.9 | 0.31 | 0.18 | 0.17 | 0.28 |
Carpinteria | 11 | 840,000 | 6400 | 104 | 21 | 1.08 | 0.33 | 0.35 |
Carpinteria | 20 | 3300 | 2.2 | 6.9 | 15 | 1.1 | 37 | 0.75 |
Carpinteria | 21 | 23,000 | 3.1 | 7.0 | 16 | 0.53 | 24 | 0.39 |
Carpinteria | 22 | 7500 | 2.4 | 6.5 | 14 | 0.69 | 27 | 0.44 |
Carpinteria | 23 | 11,000 | 3.1 | 9.4 | 23 | 1.11 | 44 | 0.67 |
Ojai | 13 | 3300 | 1.12 | 1.5 | 0.42 | 1.00 | 0.68 | 1.07 |
Ojai | 14 | 160 | 1.4 | 1.8 | 0.46 | 1.3 | 0.43 | 2.9 |
Ojai | 15 | 290 | 0.35 | 0.67 | 0.103 | 0.35 | 0.13 | 0.099 |
Ojai | 17 | 3800 | 1.5 | 0.50 | 0.0052 | 0.57 | 0.15 | 0.30 |
Ojai | 18 | 910 | 1.9 | 2.2 | 0.59 | 0.95 | 0.57 | 0.94 |
Ojai | 19 | 110 | 0.86 | 0.99 | 0.027 | 1.2 | 0.15 | 0.31 |
Canister | Methane (ppmv) | Ethane | Propane | i-Butane | n-Butane | i-Pentane | n-Pentane |
---|---|---|---|---|---|---|---|
20-reference | 3.20 | 1.6 | 1.1 | 0.75 | 0.31 | 1.2 | 0.06 |
20-sample | 9.82 | 4.1 | 6.3 | 9.4 | 0.94 | 18 | 0.40 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weed, B.M.; Brambila, G.D.; Doezema, L.A. Natural Seepage of Methane and Light Alkanes at Three Locations in Southern California. Atmosphere 2020, 11, 979. https://doi.org/10.3390/atmos11090979
Weed BM, Brambila GD, Doezema LA. Natural Seepage of Methane and Light Alkanes at Three Locations in Southern California. Atmosphere. 2020; 11(9):979. https://doi.org/10.3390/atmos11090979
Chicago/Turabian StyleWeed, Brynne M., Gisselle D. Brambila, and Lambert A. Doezema. 2020. "Natural Seepage of Methane and Light Alkanes at Three Locations in Southern California" Atmosphere 11, no. 9: 979. https://doi.org/10.3390/atmos11090979
APA StyleWeed, B. M., Brambila, G. D., & Doezema, L. A. (2020). Natural Seepage of Methane and Light Alkanes at Three Locations in Southern California. Atmosphere, 11(9), 979. https://doi.org/10.3390/atmos11090979