Temperature Response from the Change of Surface Heat Flux and Vertical Diffusivity by Urbanization
Abstract
:1. Introduction
2. 1-D Diffusion Model and Solution
2.1. 1-D Diffusion Model
2.2. Solution to the 1-D Model
2.3. Analytical Solution with Time-Varying
3. Numerical Results
3.1. Response to the Change of Surface Heat Flux
3.2. Response to the Change Of Diffusivity
4. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Solution to Equation (14)
References
- Oke, T.R. Boundary-Layer Climate; Methuen: London, UK, 1987; 435p. [Google Scholar]
- Oke, T.R. The Heat Island of the Urban Boundary Layer: Characteristics, Causes and Effects. In Wind Climate in Cities, NATO ASI Series (Series E: Applied Sciences); Cermak, J.E., Davenport, A.G., Plate, E.J., Viegas, D.X., Eds.; Springer: Dordrecht, The Netherlands, 1995; pp. 81–108. [Google Scholar]
- Oke, T.R. The heat island of the urban boundary layer: Characteristics, causes and effects. In Wind Climate in Cities; Cermak, J.E., Ed.; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1995; Volume 84, pp. 35–45. [Google Scholar]
- Grimmond, C.S.B.; Roth, M.; Oke, T.R.; Au, Y.C.; Best, M.; Betts, R.; Carmichael, G.; Cleugh, H.; Dabberdt, W.; Emmanuel, R.; et al. Climate and more sustainable cities: Climate information for improved planning and management of cities (Producers/capabilities perspective). Procedia Environ. Sci. 2010, 1, 247–274. [Google Scholar] [CrossRef] [Green Version]
- Roth, M. Urban Heat Islands. In Handbook of Environmental Fluid Dynamics; Fernando, H.J.S., Ed.; CRC Press/Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2013; pp. 143–159. [Google Scholar]
- Martilli, A. Current research and future challenges in urban mesoscale modelling. Int. J. Climatol. 2007, 27, 1909–1918. [Google Scholar] [CrossRef]
- Masson, V. Urban surface modeling and meso-scale impact of cities. Theor. Appl. Clim. 2006, 84, 35–45. [Google Scholar] [CrossRef]
- Leroyer, S.; Blair, S.; Mailhot, J.; Strachan, I.B. Micro-scale Numerical Prediction over Montreal with the Canadian external urban modeling system. J. Appl. Meteor. Clim. 2011, 50, 2410–2428. [Google Scholar] [CrossRef]
- Stroud, C.A.; Ren, S.; Zhang, J.; Moran, M.D.; Akingunola, A.; Makar, P.A.; Munoz-Alpizar, R.; Leroyer, S.; Belair, S.; Sills, D.; et al. Chemical Analysis of Surface. Level Ozone Exceedances during the 2015 Pan American Games. Atmosphere 2020, 11, 572. [Google Scholar] [CrossRef]
- Ren, S.; Stroud, C.; Belair, S.; Leroyer, S.; Munoz-Alpizar, R.; Moran, M.; Zhang, J.; Akingunola, A.; Makar, P. Impact of urbanization on the predictions of urban meteorology and pollutants over four major North American cities. Atmosphere 2020, 11, 969. [Google Scholar] [CrossRef]
- Masson, V. A Physically-Based Scheme For The Urban Energy Budget In Atmospheric Models. Bound.-Layer Meteorol. 2000, 94, 357–397. [Google Scholar] [CrossRef]
- Martilli, A. Numerical study of urban impact on boundary layer structure: Sensitivity to wind speed, urban morphology and rural soil moisture. J. Appl. Meteor. 2002, 41, 1247–1266. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat islan. Q. J. R. Meteorol. Soc. 1982, 108, 1–23. [Google Scholar]
- Cleugh, H.A.; Oke, T.R. Suburban-rural energy balance comparisons in summer for Vancouver, B.C. Bound.-Layer Meteorol. 1986, 36, 351–369. [Google Scholar] [CrossRef]
- Makar, P.A.; Gong, W.; Hogrefe, C.; Zhang, Y.; Curci, G.; Žabkar, R.; Milbr, T.J.; Im, U.; Balzarini, A.; Baró, R.; et al. Feedbacks between air pollution and weather, Part 1: Effects on weather. Atmos. Environ. 2015, 115, 442–469. [Google Scholar] [CrossRef]
- Leij, F.J.; Priesack, E.; Schaap, M.G. Solute transport modeled with Green’s functions with application to persistent solute source. J. Contam. Hydrol. 2000, 41, 155–173. [Google Scholar] [CrossRef]
- Jaiswal, D.K.; Kumar, A.; Yadav, P.R. Analytical solution to the one-dimensional advection-diffusion equation with temporally dependent coefficients. J. Water Resour. Prot. 2011, 3, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.S.; Liu, C.W. Generalized analytical solution for advection-dispersion equation in finite spatial domain with arbitrary time-dependent inlet boundary condition. Hydrol. Earth Syst. Sci. 2011, 15, 2471–2479. [Google Scholar] [CrossRef] [Green Version]
- Holzer, M.; Hall, T.M. Transit-Time and Tracer-Age Distributions in Geophysical Flows. J. Atmos. Sci. 2000, 57, 3539–3558. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Chen, J.M.; Liu, J.; Chan, D.; Higuchi, K.; Shashkov, A. A vertical diffusion scheme to estimate the atmospheric rectifier effect. J. Geophys. Res. 2004, 109, D04306. [Google Scholar] [CrossRef]
- Arson, V.E.; Volkmer, H. An idealized model of the one-dimensional carbon dioxide rectifier effect. Tellus 2008, 60B, 76–84. [Google Scholar]
- Ren, S. Solutions to the 3-D transport equation and 1-D diffusion equation for passive tracers in the atmospheric boundary layer and their applications. J. Atmos. Sci. 2019, 76, 2143–2169. [Google Scholar] [CrossRef]
- Kevin, D.C.; Beck, J.V.; Haji-Sheikh, A.; Litkouhi, B. Heat Conduction Using GREEN’S Functions; CRC Press, Taylor Francis Group: Boca Raton, FL, USA, 2011; 663p. [Google Scholar]
- Bateman, H. Tables of Integral Transforms; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1954; Volume 1, 391p. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, S.; Stroud, C.A. Temperature Response from the Change of Surface Heat Flux and Vertical Diffusivity by Urbanization. Atmosphere 2020, 11, 978. https://doi.org/10.3390/atmos11090978
Ren S, Stroud CA. Temperature Response from the Change of Surface Heat Flux and Vertical Diffusivity by Urbanization. Atmosphere. 2020; 11(9):978. https://doi.org/10.3390/atmos11090978
Chicago/Turabian StyleRen, Shuzhan, and Craig A. Stroud. 2020. "Temperature Response from the Change of Surface Heat Flux and Vertical Diffusivity by Urbanization" Atmosphere 11, no. 9: 978. https://doi.org/10.3390/atmos11090978
APA StyleRen, S., & Stroud, C. A. (2020). Temperature Response from the Change of Surface Heat Flux and Vertical Diffusivity by Urbanization. Atmosphere, 11(9), 978. https://doi.org/10.3390/atmos11090978