Spatial and Temporal Trends of Gaseous Elemental Mercury over a Highly Impacted Coastal Environment (Northern Adriatic, Italy)
Abstract
:1. Introduction
2. Experiments
2.1. Study Area
2.2. Gaseous Elemental Mercury (GEM) Measurements
3. Results and Discussion
3.1. GEM Level and Distribution
3.2. GEM Time-Series
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beckers, F.; Rinklebe, J. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 693–794. [Google Scholar] [CrossRef]
- Selin, N.E. Global biogeochemical cycling of mercury: A review. Annu. Rev. Environ. Resour. 2009, 34, 43–63. [Google Scholar] [CrossRef] [Green Version]
- Boening, D.W. Ecological effects, transport, and fate of mercury: A general review. Chemosphere 2000, 40, 1335–1351. [Google Scholar] [CrossRef]
- Morel, F.M.M.; Kraepiel, A.M.L.; Amyot, M. The chemical cycle and bioaccumulation of mercury. Annu. Rev. Ecol. Syst. 1998, 29, 543–566. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, W.F.; Clarkson, T.W. Mercury and monomethylmercury: Present and future concerns. Environ. Health Perspect. 1991, 96, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Rice, K.M.; Walker, E.M.; Wu, M.; Gillette, C.; Blough, E.R. Environmental mercury and its toxic effects. J. Prev. Med. Public Health 2014, 47, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kabir, E.; Jahan, S.A. A review on the distribution of Hg in the environment and its human health impacts. J. Hazard. Mater. 2016, 306, 376–385. [Google Scholar] [CrossRef]
- Zhang, Y.; Jaeglé, L.; Thompson, L.; Streets, D.G. Six centuries of changing oceanic mercury. Glob. Biogeochem. Cycles 2014, 1251–1261. [Google Scholar] [CrossRef]
- Outridge, P.M.; Mason, R.P.; Wang, F.; Guerrero, S.; Heimbürger-Boavida, L.E. Updated global and oceanic mercury budgets for the United Nations global mercury assessment 2018. Environ. Sci. Technol. 2018, 52, 11466–11477. [Google Scholar] [CrossRef]
- Mason, R.P.; Sheu, G.R. Role of the ocean in the global Mercury CYCLE. Glob. Biogeochem. Cycles 2002, 16, 40–41. [Google Scholar] [CrossRef]
- UN Environment. Global Mercury Assessment 2018; UN Environment Programme: Geneva, Switzerland, 2019. [Google Scholar]
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a global pollutant: Sources, pathways, and effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef] [PubMed]
- Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R.B.; Friedli, H.R.; Leaner, J.; Mason, R.; Mukherjee, A.B.; Stracher, G.B.; Streets, D.G.; et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 2010, 10, 5951–5964. [Google Scholar] [CrossRef] [Green Version]
- Sundseth, K.; Pacyna, J.M.; Pacyna, E.G.; Pirrone, N.; Thorne, R.J. Global sources and pathways of mercury in the context of human health. Int. J. Environ. Res. Public Health 2017, 14. [Google Scholar] [CrossRef] [PubMed]
- Poissant, L.; Pilote, M.; Beauvais, C.; Constant, P.; Zhang, H.H. A year of continuous measurements of three atmospheric mercury species (GEM, RGM and Hgp) in Southern Québec, Canada. Atmos. Environ. 2005, 39, 1275–1287. [Google Scholar] [CrossRef]
- Slemr, F.; Schuster, G.; Seiler, W. Distribution, speciation, and budget of atmospheric mercury. J. Atmos. Chem. 1985, 3, 407–434. [Google Scholar] [CrossRef]
- Griggs, T.; Liu, L.; Talbot, R.W.; Torres, A.; Lan, X. Comparison of atmospheric mercury speciation at a coastal and an urban site in southeastern Texas, USA. Atmosphere 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Mao, H.; Talbot, R.W.; Sigler, J.M.; Sive, B.C.; Hegarty, J.D. Seasonal and diurnal variations of Hg&Deg; over New England. Atmos. Chem. Phys. 2008, 8, 1403–1421. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, W.H.; Munthe, J. Atmospheric mercury—An overview. Atmos. Environ. 1998, 32, 809–822. [Google Scholar] [CrossRef]
- Travnikov, O. Contribution of the intercontinental atmospheric transport to mercury pollution in the northern hemisphere. Atmos. Environ. 2005, 39, 7541–7548. [Google Scholar] [CrossRef]
- Valente, R.J.; Shea, C.; Lynn Humes, K.; Tanner, R.L. Atmospheric mercury in the great smoky mountains compared to regional and global levels. Atmos. Environ. 2007, 41, 1861–1873. [Google Scholar] [CrossRef]
- Sprovieri, F.; Pirrone, N.; Ebinghaus, R.; Kock, H.; Dommergue, A. A review of worldwide atmospheric mercury measurements. Atmos. Chem. Phys. 2010, 10, 8245–8265. [Google Scholar] [CrossRef] [Green Version]
- Lindberg, S.; Bullock, R.; Ebinghaus, R.; Engstrom, D.; Feng, X.; Fitzgerald, W.; Pirrone, N.; Prestbo, E.; Seigneur, C. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio 2007, 36, 19–32. [Google Scholar] [CrossRef]
- Sprovieri, F.; Pirrone, N.; Bencardino, M.; D’Amore, F.; Carbone, F.; Cinnirella, S.; Mannarino, V.; Landis, M.; Ebinghaus, R.; Weigelt, A.; et al. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network. Atmos. Chem. Phys. 2016, 16, 11915–11935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, X.; Talbot, R.; Laine, P.; Lefer, B.; Flynn, J.; Torres, A. Seasonal and diurnal variations of total gaseous mercury in urban Houston, TX, USA. Atmosphere 2014, 5, 399–419. [Google Scholar] [CrossRef] [Green Version]
- Rutter, A.P.; Snyder, D.C.; Stone, E.A.; Schauer, J.J.; Gonzalez-Abraham, R.; Molina, L.T.; Ḿarquez, C.; Ćardenas, B.; De Foy, B. In situ measurements of speciated atmospheric mercury and the identification of source regions in the Mexico City metropolitan area. Atmos. Chem. Phys. 2009, 9, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Cheng, I.; Zhang, L.; Mao, H.; Blanchard, P.; Tordon, R.; Dalziel, J. Seasonal and diurnal patterns of speciated atmospheric mercury at a coastal-rural and a coastal-urban site. Atmos. Environ. 2014, 82, 193–205. [Google Scholar] [CrossRef]
- Mao, H.; Cheng, I.; Zhang, L. Current understanding of the driving mechanisms for spatiotemporal variations of atmospheric speciated mercury: A review. Atmos. Chem. Phys. 2016, 16, 12897–12924. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; Luke, W.T.; Kelley, P.; Cohen, M.D.; Artz, R.; Olson, M.L.; Schmeltz, D.; Puchalski, M.; Goldberg, D.L.; Ring, A.; et al. Atmospheric mercury measurements at a suburban site in the mid-atlantic united states: Inter-annual, seasonal and diurnal variations and source-receptor relationships. Atmos. Environ. 2016, 146, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Esbrí, J.M.; Martínez-Coronado, A.; Higueras, P.L. Temporal variations in gaseous elemental mercury concentrations at a contaminated Site: Main factors affecting nocturnal maxima in daily cycles. Atmos. Environ. 2016, 125, 8–14. [Google Scholar] [CrossRef]
- Higueras, P.; Oyarzun, R.; Kotnik, J.; Esbrí, J.M.; Martínez-Coronado, A.; Horvat, M.; López-Berdonces, M.A.; Llanos, W.; Vaselli, O.; Nisi, B.; et al. A compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa and China: Separating fads from facts. Environ. Geochem. Health 2014, 36, 713–734. [Google Scholar] [CrossRef] [Green Version]
- Covelli, S.; Faganeli, J.; Horvat, M.; Brambati, A. Mercury contamination of coastal sediments as the result of long-term cinnabar mining activity (gulf of Trieste, Northern Adriatic Sea). Appl. Geochem. 2001, 16, 541–558. [Google Scholar] [CrossRef]
- Boero, F.; Brian, F.; Micheli, F. Scientific design and monitoring of mediterranean marine protected areas. In Proceedings of the CIESM Workshop Series No 8, Porto Cesareo, Italy, 21–24 October 1999; p. 64. [Google Scholar]
- Olivotti, R.; Faganeli, J.; Malej, A. Impact of “organic” pollutants on coastal waters, gulf of Trieste. Water Sci. Technol. 1986, 18, 57–68. [Google Scholar] [CrossRef]
- Adami, G.; Barbieri, P.; Piselli, S.; Predonzani, S.; Reisenhofer, E. New data on organic pollutants in surface sediments in the harbour of Trieste. Ann. Chim. 1998, 88, 745–754. [Google Scholar]
- Pozo, K.; Lazzerini, D.; Perra, G.; Volpi, V.; Corsolini, S.; Focardi, S. Levels and spatial distribution of polychlorinated biphenyls (PCBs) in superficial sediment from 15 Italian Marine Protected Areas (MPA). Mar. Pollut. Bull. 2009, 58, 773–776. [Google Scholar] [CrossRef] [PubMed]
- Adami, G.; Barbieri, P.; Piselli, S.; Predonzani, S.; Reisenhofer, E. Detecting and characterising sources of persistent organic pollutants (PAHs and PCBs) in surface sediments of an industrialized area (harbour of Trieste, Northern Adriatic Sea). J. Environ. Monit. 2000, 2, 261–265. [Google Scholar] [CrossRef]
- Formalewicz, M.; Rampazzo, F.; Noventa, S.; Gion, C.; Petranich, E.; Crosera, M.; Covelli, S.; Faganeli, J.; Berto, D. Organotin compounds in touristic marinas of the Northern Adriatic sea: Occurrence, speciation and potential recycling at the sediment-water interface. Environ. Sci. Pollut. Res. 2019, 26, 31142–31157. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, P.; Adami, G.; Predonzani, S.; Reisenhofer, E. Heavy metals in surface sediments near urban and industrial sewage discharges in the gulf of Trieste. Toxicol. Environ. Chem. 1999, 71, 105–114. [Google Scholar] [CrossRef]
- Cibic, T.; Acquavita, A.; Aleffi, F.; Bettoso, N.; Blasutto, O.; De Vittor, C.; Falconi, C.; Falomo, J.; Faresi, L.; Predonzani, S.; et al. Integrated approach to sediment pollution: A case study in the gulf of Trieste. Mar. Pollut. Bull. 2008, 56, 1650–1657. [Google Scholar] [CrossRef]
- Milivojevič Nemanič, T.; Leskovšek, H.; Horvat, M.; Vrišer, B.; Bolje, A. Organotin compounds in the marine environment of the bay of Piran, Northern Adriatic sea. J. Environ. Monit. 2002, 4, 426–430. [Google Scholar] [CrossRef]
- Ščančar, J.; Zuliani, T.; Turk, T.; Milačič, R. Organotin compounds and selected metals in the marine environment of Northern Adriatic sea. Environ. Monit. Assess. 2007, 127, 271–282. [Google Scholar] [CrossRef]
- Acquavita, A.; Predonzani, S.; Mattassi, G.; Rossin, P.; Tamberlich, F.; Falomo, J.; Valic, I. Heavy metal contents and distribution in coastal sediments of the gulf of Trieste (NORTHERN Adriatic sea, Italy). Water. Air. Soil Pollut. 2010, 211, 95–111. [Google Scholar] [CrossRef]
- Petranich, E.; Croce, S.; Crosera, M.; Pavoni, E.; Faganeli, J.; Adami, G.; Covelli, S. Mobility of Metal(Loid)s at the Sediment-Water Interface in Two Tourist Port Areas of the Gulf of Trieste (Northern Adriatic sea). Environ. Sci. Pollut. Res. 2018, 25, 26887–26902. [Google Scholar] [CrossRef] [PubMed]
- Horvat, M.; Covelli, S.; Faganeli, J.; Logar, M.; Mandić, V.; Rajar, R.; Širca, A.; Žagar, D. Mercury in contaminated coastal environments. A case study: The gulf of Trieste. Sci. Total Environ. 1999, 237–238, 43–56. [Google Scholar] [CrossRef]
- Faganeli, J.; Horvat, M.; Covelli, S.; Fajon, V.; Logar, M.; Lipej, L.; Cermelj, B. Mercury and methylmercury in the gulf of Trieste (Northern Adriatic sea). Sci. Total Environ. 2003, 304, 315–326. [Google Scholar] [CrossRef]
- Piani, A.; Acquavita, A.; Catalano, L.; Contin, M.; Mattassi, G.; De Nobili, M. Effects of long term Hg contamination on soil mercury speciation and soil biological activities. E3S Web Conf. 2013, 1, 1–4. [Google Scholar] [CrossRef]
- Sholupov, S.E.; Ganeyev, A.A. Zeeman atomic absorption spectrometry using high frequency modulated light polarization. Spectrochim. Acta Part B At. Spectrosc. 1995, 50, 1227–1236. [Google Scholar] [CrossRef]
- McKinney, W. Data structures for statistical computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; Volume 1697900, pp. 51–56. [Google Scholar]
- Sievert, C.; Parmer, C.; Hocking, T.; Chamberlain, S.; Ram, K.; Corvellec, M.; Despouy, P. Plotly: Create Interactive Web Graphics via “Plotly. Js.”. 2018. Available online: https://rdrr.io/cran/plotly/ (accessed on 28 August 2020).
- Acquavita, A.; Biasiol, S.; Lizzi, D.; Mattassi, G.; Pasquon, M.; Skert, N.; Marchiol, L. Gaseous elemental mercury level and distribution in a heavily contaminated site: The ex-chlor alkali plant in torviscosa (Northern Italy). Water. Air. Soil Pollut. 2017, 228. [Google Scholar] [CrossRef]
- Floreani, F.; Acquavita, A.; Petranich, E.; Covelli, S. Diurnal fluxes of Gaseous elemental mercury from the water-air interface in coastal environments of the Northern Adriatic sea. Sci. Total Environ. 2019, 668, 925–935. [Google Scholar] [CrossRef]
- Wängberg, I.; Munthe, J.; Amouroux, D.; Andersson, M.E.; Fajon, V.; Ferrara, R.; Gårdfeldt, K.; Horvat, M.; Mamane, Y.; Melamed, E.; et al. Atmospheric mercury at Mediterranean coastal stations. Environ. Fluid Mech. 2008, 8, 101–116. [Google Scholar] [CrossRef]
- Acquavita, A.; Brandolin, D.; Felluga, A.; Maddaleni, P.; Meloni, C.; Poli, L.; Skert, N.; Zanello, A. Mercury distribution and speciation in soils contaminated by historically mining activity: The Isonzo River plain. In Proceedings of the Congresso SIMP-SGI-SOGEI 2019, Parma, Italy, 16–19 September 2019. [Google Scholar]
- Marumoto, K.; Hayashi, M.; Takami, A. Atmospheric mercury concentrations at two sites in the Kyushu Islands, Japan, and evidence of long-range transport from East Asia. Atmos. Environ. 2015, 117, 147–155. [Google Scholar] [CrossRef]
- Bagnato, E.; Sproveri, M.; Barra, M.; Bitetto, M.; Bonsignore, M.; Calabrese, S.; Di Stefano, V.; Oliveri, E.; Parello, F.; Mazzola, S. The sea-air exchange of mercury (Hg) in the marine boundary layer of the Augusta Basin (Southern Italy): Concentrations and evasion flux. Chemosphere 2013, 93, 2024–2032. [Google Scholar] [CrossRef] [PubMed]
- Gibičar, D.; Horvat, M.; Logar, M.; Fajon, V.; Falnoga, I.; Ferrara, R.; Lanzillotta, E.; Ceccarini, C.; Mazzolai, B.; Denby, B.; et al. Human exposure to mercury in the vicinity of chlor-alkali plant. Environ. Res. 2009, 109, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Oyarzun, R.; Higueras, P.; Esbrí, J.M.; Pizarro, J. Mercury in air and plant specimens in herbaria: A pilot study at the MAF herbarium in Madrid (Spain). Sci. Total Environ. 2007, 387, 346–352. [Google Scholar] [CrossRef]
- Nie, X.; Mao, H.; Li, P.; Li, T.; Zhou, J.; Wu, Y.; Yang, M.; Zhen, J.; Wang, X.; Wang, Y. Total gaseous mercury in a coastal city (Qingdao, China): Influence of sea-land breeze and regional transport. Atmos. Environ. 2020, 235, 1–11. [Google Scholar] [CrossRef]
- Amos, H.M.; Jacob, D.J.; Holmes, C.D.; Fisher, J.A.; Wang, Q.; Yantosca, R.M.; Corbitt, E.S.; Galarneau, E.; Rutter, A.P.; Gustin, M.S.; et al. Gas-particle partitioning of atmospheric Hg (II) and its effect on global mercury deposition. Atmos. Chem. Phys. 2012, 12, 591–603. [Google Scholar] [CrossRef] [Green Version]
- Malcolm, E.G.; Keeler, G.J.; Landis, M.S. The effects of the coastal environment on the atmospheric mercury cycle. J. Geophys. Res. 2003, 108, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lyman, S.N.; Cheng, I.; Gratz, L.E.; Weiss-Penzias, P.; Zhang, L. An updated review of atmospheric mercury. Sci. Total Environ. 2020, 707, 55–75. [Google Scholar] [CrossRef]
- Holmes, C.D.; Jacob, D.J.; Mason, R.P.; Jaffe, D.A. Sources and deposition of reactive gaseous mercury in the marine atmosphere. Atmos. Environ. 2009, 43, 2278–2285. [Google Scholar] [CrossRef] [Green Version]
- Bełdowska, M.; Falkowska, L.; Siudek, P.; Gajecka, A.; Lewandowska, A.; Rybka, A.; Zgrundo, A. Atmospheric mercury over the coastal zone of the gulf of Gda ń Sk oceanological and hydrobiological studies atmospheric mercury over the coastal zone of the gulf of Gda ń Sk. Int. J. Oceanogr. Hydrobiol. 2007, 36, 1–10. [Google Scholar]
- Bratkič, A.; Tinta, T.; Koron, N.; Guevara, S.R.; Begu, E.; Barkay, T.; Horvat, M.; Falnoga, I.; Faganeli, J. Mercury transformations in a coastal water column (gulf of Trieste, Northern Adriatic sea). Mar. Chem. 2018, 200, 57–67. [Google Scholar] [CrossRef]
SITE | GEM Mean (ng m−3) | GEM dev. st. (ng m−3) | GEM Max (ng m−3) | N Data | Lat. (WGS84) | Lon. (WGS84) | Altitude (m m.s.l.) | |
---|---|---|---|---|---|---|---|---|
Non-urban Hg-contaminated areas | FOSSALON | 3.57 | 1.44 | 48.46 | 914,493 | |||
FOS1 | 4.14 | 1.48 | 18.18 | 374,127 | 45.718837 | 13.516823 | 0 | |
FOS2 | 2.83 | 1.45 | 48.46 | 161,700 | 45.728359 | 13.536141 | 0 | |
FOS3 | 3.30 | 1.40 | 47.63 | 378,666 | 45.719781 | 13.492587 | 0 | |
GRADO | 2.74 | 0.85 | 13.99 | 278,026 | ||||
GRA1 | 1.85 | 0.76 | 8.48 | 47,599 | 45.682133 | 13.390340 | 0 | |
GRA2 | 3.48 | 0.94 | 13.99 | 230,427 | 45.678219 | 13.388133 | 1 | |
VAL NOGHERA [*] | 2.12 | 1.16 | 9.52 | 17,372 | ||||
VN1 | 2.28 | 1.27 | 9.52 | 8204 | 45.710263 | 13.308906 | 0 | |
VN2 | 1.98 | 1.06 | 8.03 | 9168 | 45.713665 | 13.288101 | 0 | |
Urban areas | MONFALCONE | 1.19 | 0.40 | 17.28 | 22,910 | |||
MON | 1.19 | 0.40 | 17.28 | 22,910 | 45.801200 | 13.528419 | 5 | |
VILLAGGIO DEL PESCATORE | 2.53 | 0.94 | 8.61 | 219,138 | ||||
PES | 2.53 | 0.94 | 8.61 | 219,138 | 45.777859 | 13.588559 | 0 | |
TRIESTE | 2.56 | 1.20 | 26.46 | 1,845,127 | ||||
TS1 | 2.36 | 1.14 | 21.24 | 1,681,994 | 45.658275 | 13.800820 | 80 | |
TS2 | 3.26 | 1.62 | 26.46 | 84,186 | 45.623776 | 13.803742 | 40 | |
TS3 | 4.43 | 1.12 | 13.77 | 28,540 | 45.647045 | 13.764987 | 10 | |
TS4 | 3.07 | 1.43 | 10.02 | 50,407 | 45.656577 | 13.784282 | 30 | |
Pristine areas | BASOVIZZA [§] | 1.20 | 0.32 | 2.80 | 2676 | |||
BAS | 1.20 | 0.32 | 2.80 | 2676 | 45.641365 | 13.862287 | 380 | |
PIRAN [*] | 1.88 | 1.07 | 8.60 | 7506 | ||||
PIR | 1.88 | 1.07 | 8.60 | 7506 | 45.518672 | 13.568036 | 0 |
Site | Temperature | Solar Radiation | Wind Speed | Wind Direction | Relative Humidity | Season | |
---|---|---|---|---|---|---|---|
Non-urban Hg-contaminated sites | FOS1_2 | −0.25 | −0.42 | −0.30 | −0.17 | Spring | |
FOS2_1 | 0.02 | −0.14 | −0.26 | 0.09 | 0.07 | Spring | |
FOS3_1 | −0.36 | −0.44 | −0.16 | −0.19 | 0.38 | Autumn | |
GRA2_1 | −0.31 | −0.26 | 0.25 | 0.08 | 0.72 | Summer | |
GRA1_1 | −0.12 | −0.54 | −0.20 | −0.32 | 0.22 | Autumn | |
PES_1 | 0.47 | 0.43 | 0.18 | 0.24 | −0.18 | Summer | |
Urban sites | TS1_4 | 0.26 | −0.02 | −0.27 | 0.18 | 0.49 | Spring |
TS3_1 | 0.11 | 0.53 | 0.34 | 0.17 | −0.11 | Spring | |
TS1_5 | −0.05 | −0.02 | −0.02 | −0.07 | −0.08 | Summer | |
TS2_3 | 0.16 | 0.63 | −0.49 | 0.60 | 0.79 | Summer | |
TS1_6 | 0.22 | −0.16 | −0.48 | 0.21 | 0.51 | Autumn |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barago, N.; Floreani, F.; Acquavita, A.; Esbrí, J.M.; Covelli, S.; Higueras, P. Spatial and Temporal Trends of Gaseous Elemental Mercury over a Highly Impacted Coastal Environment (Northern Adriatic, Italy). Atmosphere 2020, 11, 935. https://doi.org/10.3390/atmos11090935
Barago N, Floreani F, Acquavita A, Esbrí JM, Covelli S, Higueras P. Spatial and Temporal Trends of Gaseous Elemental Mercury over a Highly Impacted Coastal Environment (Northern Adriatic, Italy). Atmosphere. 2020; 11(9):935. https://doi.org/10.3390/atmos11090935
Chicago/Turabian StyleBarago, Nicolò, Federico Floreani, Alessandro Acquavita, José María Esbrí, Stefano Covelli, and Pablo Higueras. 2020. "Spatial and Temporal Trends of Gaseous Elemental Mercury over a Highly Impacted Coastal Environment (Northern Adriatic, Italy)" Atmosphere 11, no. 9: 935. https://doi.org/10.3390/atmos11090935
APA StyleBarago, N., Floreani, F., Acquavita, A., Esbrí, J. M., Covelli, S., & Higueras, P. (2020). Spatial and Temporal Trends of Gaseous Elemental Mercury over a Highly Impacted Coastal Environment (Northern Adriatic, Italy). Atmosphere, 11(9), 935. https://doi.org/10.3390/atmos11090935