Validation of the Atmospheric Boundary Layer Height Estimated from the MODIS Atmospheric Profile Data at an Equatorial Site
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Radiosonde Data
2.2. PM10 Data
2.3. MODIS Data
3. Methods
3.1. Determination of ABLH
3.2. Validation of MODIS ABLH
3.3. Temporal Variation
4. Results
4.1. Comparison of Methods
4.2. PM10-ABLH Relationship
4.3. Temporal Variation of ABLH
5. Discussion
5.1. Comparison of MODIS and Radiosonde ABLH
5.2. MODIS ABLH-PM10 Relationship
5.3. Temporal Variations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Site | Reference | latitude | Longitude | Altitude |
---|---|---|---|---|
Arua | J | 3.020 | 30.875 | 1310 |
Gulu | I | 2.778 | 32.294 | 1100 |
Entebbe | A2 | 0.050 | 32.450 | 1155 |
Kasese | M | 0.175 | 30.086 | 1000 |
Kiboga | L | 0.915 | 31.765 | 1180 |
Kitgum | H | 3.298 | 32.881 | 760 |
Kotido | G | 3.006 | 34.114 | 1260 |
Masaka | A1 | −0.334 | 31.732 | 1288 |
Nakasongola | B | 1.314 | 32.459 | 1160 |
Nebbi | K | 2.479 | 31.089 | 981 |
Ntungamo | C | −0.872 | 30.266 | 1400 |
Sironko | F | 1.231 | 34.248 | 1178 |
Soroti | E | 1.738 | 33.622 | 1080 |
Tororo | D | 0.681 | 34.166 | 1278 |
Appendix B
References
- Seo, S.; Kim, J.; Lee, H.; Jeong, U.; Kim, W.; Holben, B.N.; Kim, S.-W.; Song, C.H.; Lim, J.H. Estimation of PM 10 concentrations over Seoul using multiple empirical models with AERONET and MODIS data collected during the DRAGON-Asia campaign. Atmos. Chem. Phys. 2015, 15, 319–334. [Google Scholar] [CrossRef] [Green Version]
- Su, T.; Li, Z.; Kahn, R. Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: Regional pattern and influencing factors. Atmos. Chem. Phys. 2018, 18, 15921–15935. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Y.; Zhang, T.; Liu, J.; Lv, L.; Dong, Y.; Chen, Z. Atmosphere boundary layer height and its effect on air pollutants in Beijing during winter heavy pollution. Atmos. Res. 2019, 215, 305–316. [Google Scholar] [CrossRef]
- Yap, X.Q.; Hashim, M. A robust calibration approach for PM10 prediction from MODIS aerosol optical depth. Atmos. Chem. Phys. 2013, 13, 3517–3526. [Google Scholar] [CrossRef] [Green Version]
- Davy, R. The climatology of the atmospheric boundary layer in contemporary global climate models. J. Clim. 2018, 31, 9151–9173. [Google Scholar] [CrossRef]
- Davy, R.; Esau, I. Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth. Nat. Commun. 2016, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Miao, Y.; Zhang, Y.; Liu, H.; Li, Z.; Zhang, W.; He, J.; Lou, M.; Yan, Y.; Bian, L. The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data. Atmos. Chem. Phys. 2016, 16, 13309. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Liang, X.-Z. Observed diurnal cycle climatology of planetary boundary layer height. J. Clim. 2010, 23, 5790–5809. [Google Scholar] [CrossRef]
- Seidel, D.J.; Ao, C.O.; Li, K. Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res. Atmos. 2010, 115, D16113. [Google Scholar] [CrossRef] [Green Version]
- Du, C.; Liu, S.; Yu, X.; Li, X.; Chen, C.; Peng, Y.; Dong, Y.; Dong, Z.; Wang, F. Urban boundary layer height characteristics and relationship with particulate matter mass concentrations in Xi’an, central China. Aerosol Air Qual. Res. 2013, 13, 1598–1607. [Google Scholar] [CrossRef]
- Basha, G.; Ratnam, M.V. Identification of atmospheric boundary layer height over a tropical station using high-resolution radiosonde refractivity profiles: Comparison with GPS radio occultation measurements. J. Geophys. Res. Atmos. 2009, 114, D16101. [Google Scholar] [CrossRef]
- Dang, R.; Yang, Y.; Hu, X.-M.; Wang, Z.; Zhang, S. A review of techniques for diagnosing the atmospheric boundary layer height (ABLH) using aerosol lidar data. Remote Sens. 2019, 11, 1590. [Google Scholar] [CrossRef] [Green Version]
- Kotthaus, S.; Grimmond, C.S.B. Atmospheric boundary-layer characteristics from ceilometer measurements. Part 1: A new method to track mixed layer height and classify clouds. Q. J. R. Meteorol. Soc. 2018, 144, 1525–1538. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, K. Homogenized variability of radiosonde-derived atmospheric boundary layer height over the global land surface from 1973 to 2014. J. Clim. 2016, 29, 6893–6908. [Google Scholar] [CrossRef]
- Hennemuth, B.; Lammert, A. Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter. Bound. Layer Meteorol. 2006, 120, 181–200. [Google Scholar] [CrossRef]
- McGrath-Spangler, E.L.; Molod, A. Comparison of GEOS-5 AGCM planetary boundary layer depths computed with various definitions. Atmos. Chem. Phys. 2014, 14, 6717–6727. [Google Scholar] [CrossRef] [Green Version]
- Durre, I.; Yin, X.; Vose, R.S.; Applequist, S.; Arnfield, J. Enhancing the data coverage in the Integrated Global Radiosonde Archive. J. Atmos. Ocean. Technol. 2018, 35, 1753–1770. [Google Scholar] [CrossRef]
- Feng, X.; Wu, B.; Yan, N. A method for deriving the boundary layer mixing height from modis atmospheric profile data. Atmosphere 2015, 6, 1346–1361. [Google Scholar] [CrossRef] [Green Version]
- Borbas, E.; Menzel, P. MODIS Atmosphere L2 Atmosphere Profile Product. In NASA MODIS Adaptive Processing System; Goddard Space Flight Center: Greenbelt, MD, USA, 2017. [Google Scholar]
- Remer, L.A.; Mattoo, S.; Levy, R.C.; Munchak, L.A. MODIS 3 km aerosol product: Algorithm and global perspective. Atmos. Meas. Tech. 2013, 6, 1829–1844. [Google Scholar] [CrossRef] [Green Version]
- Onyango, S.; Parks, B.; Anguma, S.; Meng, Q. Spatio-Temporal Variation in the Concentration of Inhalable Particulate Matter (PM10) in Uganda. Int. J. Environ. Res. Public Health 2019, 16, 1752. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989. [Google Scholar] [CrossRef] [Green Version]
- Belle, J.; Liu, Y. Evaluation of aqua modis collection 6 aod parameters for air quality research over the continental united states. Remote Sens. 2016, 8, 815. [Google Scholar] [CrossRef] [Green Version]
- Dudeja, J.P. Micro-Pulse Lidar for the Determination of Atmospheric Boundary Layer Height. Int. J. Res. Anal. Rev. 2019, 6, 810. [Google Scholar]
- Basalirwa, C.P.K. Delineation of Uganda into climatological rainfall zones using the method of principal component analysis. Int. J. Climatol. 1995, 15, 1161–1177. [Google Scholar] [CrossRef]
- Rugumayo, A.I.; Kiiza, N.; Shima, J. Rainfall reliability for crop production a case study in Uganda. In Proceedings of the Diffuse Pollution Conference, Dublin, Ireland, 17–21 August 2003; Volume 3, pp. 143–148. [Google Scholar]
- Mehta, S.K.; Ratnam, M.V.; Sunilkumar, S.V.; Rao, D.N.; Krishna Murthy, B.V. Diurnal variability of the atmospheric boundary layer height over a tropical station in the Indian monsoon region. Atmos. Chem. Phys. 2017, 17, 531–549. [Google Scholar] [CrossRef]
- Nsubuga, F.W.; Rautenbach, H. Climate change and variability: A review of what is known and ought to be known for Uganda. Int. J. Clim. Chang. Strateg. Manag. 2018, 10, 752–771. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Gao, Z.; Li, D.; Li, Y.; Zhang, N.; Zhao, X.; Chen, J. On the computation of planetary boundary-layer height using the bulk Richardson number method. Geosci. Model Dev. 2014, 7, 2599–2611. [Google Scholar] [CrossRef] [Green Version]
Method | N | Mean ± SEM | SD | Minimum | Q1 | Median | Q3 | Maximum |
---|---|---|---|---|---|---|---|---|
PTemp | 53 | 2049 ± 184 | 1338 | 227 | 722 | 1908 | 3320 | 3986 |
RH | 53 | 2066 ± 199 | 1449 | 30 | 653 | 2262 | 3550 | 3986 |
Parcel | 53 | 1121 ± 68 | 497 | 236 | 818 | 1073 | 1421 | 2584 |
MR | 53 | 1330 ± 112 | 815 | 350 | 367 | 1189 | 2148 | 3482 |
Method | PTemp | RH | Parcel |
---|---|---|---|
RH | 0.727 | ||
0.000 | |||
Parcel | 0.227 | 0.164 | |
0.103 | 0.241 | ||
MR | 0.020 | −0.128 | 0.030 |
0.889 | 0.362 | 0.833 |
Site | PM (μg m−3) | ABLH (m) | R | p | |
---|---|---|---|---|---|
Mbarara | Morning | 72.8 ± 15.0 | 1439 ± 154 | −0.060 | 0.812 |
Afternoon | 62.7 ± 14.1 | 2344 ± 143 | 0.373 | 0.209 | |
Rubindi | Morning | 68.9 ± 9.07 | 1583 ± 132 | −0.254 | 0.325 |
Afternoon | 65.7 ± 16.2 | 2449 ± 223 | 0.465 | 0.029 | |
Kyebando | Morning | 85.7 ± 10.7 | 900 ± 139 | 0.270 | 0.372 |
Afternoon | 77.1 ± 15.7 | 2400 ± 105 | 0.002 | 0.996 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onyango, S.; Anguma, S.K.; Andima, G.; Parks, B. Validation of the Atmospheric Boundary Layer Height Estimated from the MODIS Atmospheric Profile Data at an Equatorial Site. Atmosphere 2020, 11, 908. https://doi.org/10.3390/atmos11090908
Onyango S, Anguma SK, Andima G, Parks B. Validation of the Atmospheric Boundary Layer Height Estimated from the MODIS Atmospheric Profile Data at an Equatorial Site. Atmosphere. 2020; 11(9):908. https://doi.org/10.3390/atmos11090908
Chicago/Turabian StyleOnyango, Silver, Simon K. Anguma, Geoffrey Andima, and Beth Parks. 2020. "Validation of the Atmospheric Boundary Layer Height Estimated from the MODIS Atmospheric Profile Data at an Equatorial Site" Atmosphere 11, no. 9: 908. https://doi.org/10.3390/atmos11090908
APA StyleOnyango, S., Anguma, S. K., Andima, G., & Parks, B. (2020). Validation of the Atmospheric Boundary Layer Height Estimated from the MODIS Atmospheric Profile Data at an Equatorial Site. Atmosphere, 11(9), 908. https://doi.org/10.3390/atmos11090908