Variation of Projected Atmospheric Water Vapor in Central Asia Using Multi-Models from CMIP6
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. IGRA Data
2.3. CMIP6 Data
3. Results and Discussion
3.1. Evaluation of Historical TCWV Based on Radiosonde Observations
3.2. Historical TCWV for Reference Period 1986–2005
3.3. Projected TCWV for 2021–2100
3.4. Spatiotemporal Variation of Projected TCWV
3.5. The Relationship between TCWV Variation and Ts
4. Summary and Conclusions
- (1)
- The four climate models are consistent in the simulation of TCWV in Central Asia, and with the measured sounding monthly data. The linear correlation analysis of IGRA2 data and CMIP6 data showed that three of the five sites have very good correlations, but CMIP6 data are smaller than the IGRA2 at other two sites. This indicates that TCWV obtained from the four CMIP6 models can be used to characterize the magnitude of TCWV in Central Asia.
- (2)
- The spatial distribution of TCWV in the four CMIP6 climate models during the historical simulation baseline period (1986–2005) has the same pattern. High TCWV amounts are found in the west around the Caspian Sea, Lake Aral and in other low-elevation areas, while low amounts are distributed over the southeast Pamir Plateau and other high-elevation areas. The areal average value in Central Asia is between 10.8 mm and 12.4 mm, depending on the model.
- (3)
- On the whole, TCWV in Central Asia will increase indifferent scenarios from 2021 to 2040, and the trends begin to diverge after 2040. The average TCWV will increase during 2021-2050 under SSP1-1.9 and SSP1-2.6 scenarios, and then decrease gradually after 2050. In SSP4-3.4 scenario, TCWV will continue to grow from 2021 to 2055, and then stay constant until 2100. Under SSP2-4.5 and SSP4-6.0 scenarios, TCWV will rise rapidly from 2021 to 2065, but the growth will slow down from 2065 to 2100. Under SSP3-7.0 and SSP5-8.5 scenarios, TCWV will exhibit a continuously increasing trend, with the largest increase and the fastest growth under SSP5-8.5. This indicates a strong relationship between temperature and TCWV, while the relationship between precipitation/evapotranspiration and TCWV is less prominent. This is mainly due to the fact that arid and semi-arid climate dominates in most regions of Central Asia, and low precipitation limiting the evapotranspiration. It can be assumed that the increase in TCWV in Central Asia is mainly due to the increase in the atmospheric water holding capacity caused by global warming.
- (4)
- During the four time periods 2021–2040, 2041–2060, 2061–2080, and 2081–2100, changes in TCWV are obviously different under the seven scenarios in Central Asia. The most prominent feature of TCWV change is that its growth is closely related to the altitude; the higher the elevation, the greater the TCWV increase will be.
- (5)
- Under the future scenarios SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0, and SSP5-8.5, it can be seen that the higher the radiative forcing, the steeper the regression slope is between TCWV and temperature changes; that is, the faster the increase. Under SSP3-7.0 and SSP5-8.5 scenarios, the trend slope is close to the theoretical value of the Clausius–Clapeyron equation.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC; Field, C.B.; Barros, V.R.; Dokken, D.J.; Mastrandrea, M.D.; Mach, K.J.; Abdrabo, M.A.-K.; Adger, W.N.; Anokhin, Y.A.; Anisimov, O.A.; et al. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2014: Impacts, Adaptation, and Vulnerability; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 1132. [Google Scholar]
- Chen, F.H.; Chen, J.H.; Holmes, J.; Boomer, I.; Austin, P.; Gates, J.B.; Wang, N.-L.; Brooks, S.J.; Zhang, J.-W. Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region. Quat. Sci. Rev. 2010, 29, 1055–1068. [Google Scholar] [CrossRef]
- Folland, C.K.; Rayner, N.A.; Brown, S.J.; Smith, T.M.; Shen, S.S.P.; Parker, D.E.; Macadam, I.; Jones, P.D.; Jones, R.; Nicholls, N.; et al. Global temperature change and its uncertainties since 1861. Geophys. Res. Lett. 2001, 28, 2621–2624. [Google Scholar] [CrossRef]
- Hansen, J.; Lacis, A.; Rind, D.; Russell, G.; Stone, P.; Fung, I.; Ruedy, R.; Lerner, J. Climate sensitivity: Analysis of feedback mechanisms. Geophys. Monogr. Ser. 1984, 29, 130–163. [Google Scholar] [CrossRef] [Green Version]
- Turco, R.P. Upper atmosphere aerosols: Properties and natural cycles. In The Atmospheric Effects of Stratospheric Aircraft: A First Program Report; Nasa Reference Publication: Hampton, VA, USA, 1992; Volume 1272, pp. 63–82. [Google Scholar]
- Held, I.M.; Soden, B.J. Water vapor feedback and global warming. Annu. Rev. Energy Environ. 2000, 25, 441–475. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Hurrell, J.W.; Stepaniak, D.P. The Asian Monsoon: Global Perspective. In The Asian Monsoon; Springer: New York, NY, USA, 2006; pp. 67–87. [Google Scholar]
- Zhao, T.B.; Dai, A.G.; Wang, J.H. Trends in tropospheric humidity from 1970 to 2008 over China from a homogenized radiosonde dataset. J. Clim. 2012, 25, 4549–4567. [Google Scholar] [CrossRef] [Green Version]
- Kiehl, J.T.; Trenberth, K.E. Earth’s annual global mean energy budget. Bull. Am. Meteorol. Soc. 1997, 78, 197–208. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Fasullo, J.; Smith, L. Trends and variability in column-integrated atmospheric water vapor. Clim. Dyn. 2005, 24, 741–758. [Google Scholar] [CrossRef]
- IPCC; Stocker, T.S.; Qin, D.; Plattner, G.K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; et al. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Abuduwaili, J.; Gulnura, I.; Saparov, G. Water Resources Development and Management. In Hydrology and Limnology of Central Asia; Springer Nature: Singapore; Pte Ltd.: Singapore, 2019. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meeh, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; Van Vuuren, D. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Chang. 2014, 122, 387–400. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, B.C.; Kriegler, E.; Ebi, K.L.; Kemp-Benedict, E.; Riahi, K.; Rothman, D.S.; Van Ruijven, B.J.; Van Vuuren, D.; Birkmann, J.; Kok, K.; et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Chang. 2017, 42, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Liao, W.L.; Liu, X.P.; Xu, X.Y.; Chen, G.; Liang, X.; Zhang, H.; Li, X. Projections of land use changes under the plant functional type classification in different SSP-RCP scenarios in China. Sci. Bull. 2020. [Google Scholar] [CrossRef]
- Zhang, L.X.; Chen, X.L.; Xin, X.G. Short commentary on CMIP6 Scenario Model Intercomparison Project (ScenarioMIP). Clim. Chang. Res. 2019, 15, 519–525. (In Chinese) [Google Scholar] [CrossRef]
- Chen, F.H.; Wang, J.S.; Jin, L.Y.; Zhang, Q.; Li, J.; Chen, J. Rapid warming in mid-latitude central Asia for the past 100 years. Front. Earth Sci. China 2009, 3, 42–50. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Zhang, C.; Hu, Q.; Tian, H. Temperature changes in Central Asia from 1979 to 2011 based on multiple datasets. J. Clim. 2014, 27, 1143–1167. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A.G.; Rasmussen, R.M.; Parsons, D. The changing character of precipitation of precipitation. BAMS 2003, 84, 1205–1217. [Google Scholar] [CrossRef]
- Shi, L.; Bates, J.J. Three decades of intersatellite-calibrated High-Resolution Infrared Radiation Sounder upper tropospheric water vapor. J. Geophys. Res. 2011, 116, D04108. [Google Scholar] [CrossRef]
- Glantz, M.H. Water, climate, and development issues in the Amu Darya basin. Mitig. Adapt. Strateg. Glob. Chang. 2005, 10, 23–50. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Henebry, G.M. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- Yin, Z.Y.; Wang, H.L.; Liu, X.D. A Comparative study on precipitation climatology and interannual variability in the lower mid-latitude East Asia and Central Asia. J. Clim. 2014, 27, 7830–7848. [Google Scholar] [CrossRef]
- Zonn, I.S.; Zhiltsov, S.S.; Kostianoy, A.G.; Semenov, A.V. Water resources management in Central Asia. Handb. Environ. Chem. 2020, 105, 31–46. [Google Scholar] [CrossRef]
- Narama, C.; Kääb, A.; Duishonakunov, M.; Abdrakhmatov, A. Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (~1970), Landsat (~2000), and ALOS (~2007) satellite data. Glob. Planet. Chang. 2010, 71, 42–54. [Google Scholar] [CrossRef]
- Deng, M.J.; Long, A.H.; Zhang, Y.; Li, X.; Lei, Y. Assessment of water resources development and utilization in the five Central Asia countries. Adv. Earth Sci. 2010, 25, 1347–1356. (In Chinese) [Google Scholar]
- Zhou, H.F.; Zhang, J.B. Analysis on the volume of available water resources and its carrying capacity in Xinjiang, China. Arid Land Geogr. 2005, 28, 756–763. (In Chinese) [Google Scholar]
- Jiang, J.; Zhou, T.; Zhang, W. Evaluation of satellite and reanalysis precipitable water vapor data sets against radiosonde observations in central Asia. Earth Space Sci. 2019, 6, 1129–1148. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Liu, X.Y.; Cui, C.X.; Jun, L.I.; Rui, L. The Computation and Characteristics Analysis of Water Vapor Contents in the Tarim Basin, China. Acta Geogr. Sin. 2010, 65, 853–862. (In Chinese) [Google Scholar] [CrossRef]
- Sheng, P.X.; Mao, J.T.; Li, J.G.; Zhang, A.C.; Sang, J.G.; Pan, N.X. Atmospheric Physics; Peking University Press: Beijing, China, 2003. [Google Scholar]
- Masson-Delmotte, V.; Zhai, P.X.; Pörtner, H.O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Lambert, F.H.; Webb, M.J. Dependency of global mean precipitation on surface temperature. Geophys. Res. Lett. 2008, 35, L16706. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Cai, M. Stabilization of the atmospheric boundary layer and the muted global hydrological cycle response to global warming. J. Hydrometeor 2009, 10, 347–352. [Google Scholar] [CrossRef]
- Yao, T.D.; Wang, Y.Q.; Liu, S.Y.; Pu, J.; Shen, Y.; Lu, A. Recent glacial retreat in High Asia in China and its impact on water resource in Northwest China. Sci. China Ser. D Earth Sci. 2004, 47, 1065–1075. [Google Scholar] [CrossRef]
- Siegfried, T.; Bernauer, T.; Guiennet, R.; Sellars, S.; Robertson, A.W.; Mankin, J.S.; Bauer-Gottwein, P.; Yakovlev, A. Will climate change exacerbate water stress in Central Asia? Clim. Chang. 2012, 112, 881–899. [Google Scholar] [CrossRef]
- Unger-Shayesteh, K.; Vorogushyn, S.; Farinotti, D.; Gafurov, A.; Duethmann, D.; Mandychev, A.; Merz, B. What do we know about past changes in the water cycle of Central Asian headwaters? A review. Glob. Planet. Chang. 2013, 110, 4–25. [Google Scholar] [CrossRef]
- Zhang, J.P.; Zhao, T.B. Historical and future changes of atmospheric precipitable water over China simulated by CMIP5 models. Clim. Dyn. 2019, 52, 6969–6988. [Google Scholar] [CrossRef]
Model Name | Horizontal Resolution (Lon × Lat) | Modeling Center |
---|---|---|
CanESM5 | ~2.8° × 2.8° | Canadian Centre for Climate Modelling and Analysis, Canada |
IPSL-CM6A-LR | 2.5° × 1.2676° | IPSL, France |
MIROC6 | 1.4063° × 1.40° | AORI-UT-JAMSTEC-NIES, Japan |
MRI-ESM2-0 | ~1.125° × 1.12° | MRI, Japan |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Tao, H.; Hartmann, H.; Su, B.; Wang, Y.; Jiang, T. Variation of Projected Atmospheric Water Vapor in Central Asia Using Multi-Models from CMIP6. Atmosphere 2020, 11, 909. https://doi.org/10.3390/atmos11090909
Li Z, Tao H, Hartmann H, Su B, Wang Y, Jiang T. Variation of Projected Atmospheric Water Vapor in Central Asia Using Multi-Models from CMIP6. Atmosphere. 2020; 11(9):909. https://doi.org/10.3390/atmos11090909
Chicago/Turabian StyleLi, Zhenjie, Hui Tao, Heike Hartmann, Buda Su, Yanjun Wang, and Tong Jiang. 2020. "Variation of Projected Atmospheric Water Vapor in Central Asia Using Multi-Models from CMIP6" Atmosphere 11, no. 9: 909. https://doi.org/10.3390/atmos11090909
APA StyleLi, Z., Tao, H., Hartmann, H., Su, B., Wang, Y., & Jiang, T. (2020). Variation of Projected Atmospheric Water Vapor in Central Asia Using Multi-Models from CMIP6. Atmosphere, 11(9), 909. https://doi.org/10.3390/atmos11090909