Estimation of Greenhouse Gas Emission from Hanwoo (Korean Native Cattle) Manure Management Systems
Abstract
:1. Introduction
2. Experiments
2.1. Research Site and Description
2.2. Chamber Installation, Composting Facility and Data Recording
2.3. Sampling Procedure
2.4. Flow Rate Measurement
2.5. Gas Chromatography Analysis
2.6. Calculation of Emission Fluxes
2.7. Statistical Analysis
3. Results and Discussion
3.1. Greenhouse Gas Emissions from Litter in the Hanwoo Cattle Barn
3.1.1. Estimation of Methane Flux
3.1.2. Estimation of Nitrous Oxide Flux
3.2. Greenhouse Gas Emissions from Composting Lot
3.3. Greenhouse Gas Emissions from Manure Management Systems
3.4. Comparison of Greenhouse Gas Emissions with Intergovernmental Panel on Climate Change (IPCC) Guidelines
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Steinfeld, H.; Gerber, P.; Wassenaar, T.D.; Castel, V.; Rosales, M.; Rosales, M.; de Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; Food & Agriculture Organization: Rome, Italy, 2006. [Google Scholar]
- O’Mara, F. The significance of livestock as a contributor to global greenhouse gas emissions today and in the near future. Anim. Feed. Sci. Technol. 2011, 166, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Denmead, O.T. Approaches to measuring fluxes of methane and nitrous oxide between landscapes and the atmosphere. Plant Soil 2008, 309, 5–24. [Google Scholar] [CrossRef]
- US EPA. Understanding Global Warming Potentials. Available online: https://www.epa.gov/ghgemissions/understanding-global-warming-potentials (accessed on 28 May 2020).
- Liang, Y.; Xin, H.; Wheeler, E.F.; Gates, R.S.; Li, H.; Zajaczkowski, J.S.; Topper, P.A.; Casey, K.; Behrends, B.R.; Burnham, D.J.; et al. Ammonia emissions from U.S. Laying hen houses in Iowa and Pennsylvania. Trans. ASAE 2005, 48, 1927–1941. [Google Scholar] [CrossRef]
- Cortus, E.; Jacobson, L.D.; Hetchler, B.P.; Heber, A.J.; Bogan, B.W. Methane and nitrous oxide analyzer comparison and emissions from dairy freestall barns with manure flushing and scraping. Atmos. Environ. 2015, 100, 57–65. [Google Scholar] [CrossRef]
- Peters, E.B.; McFadden, J.P. Continuous measurements of net CO2 exchange by vegetation and soils in a suburban landscape. J. Geophys. Res. Space Phys. 2012, 117, 1–16. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Sander, B.O.; Pelster, D.; Díaz-Pinés, E. Quantifying greenhouse gas emissions from managed and natural soils. In Methods for Measuring Greenhouse Gas Balances and Evaluating Mitigation Options in Smallholder Agriculture; Springer: Cham, Switzerland, 2016; pp. 71–96. [Google Scholar]
- Rochette, P.; Eriksen-Hamel, N.S. Chamber Measurements of Soil Nitrous Oxide Flux: Are Absolute Values Reliable? Soil Sci. Soc. Am. J. 2008, 72, 331–342. [Google Scholar] [CrossRef]
- Pavelka, M.; Acosta, M.; Kiese, R.; Altimir, N.; Brümmer, C.; Crill, P.; Darenova, E.; Fuß, R.; Gielen, B.; Graf, A.; et al. Standardisation of chamber technique for CO2, N2O and CH4 fluxes measurements from terrestrial ecosystems. Int. Agrophys. 2018, 32, 569–587. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Boumans, L.J.M.; Batjes, N. Modeling global annual N2O and NO emissions from fertilized fields. Glob. Biogeochem. Cycles 2002, 16, 28-1–28-9. [Google Scholar] [CrossRef]
- Jørgensen, C.J.; Struwe, S.; Elberling, B. Temporal trends in N2O flux dynamics in a Danish wetland—Effects of plant-mediated gas transport of N2O and O2 following changes in water level and soil mineral-N availability. Glob. Chang. Boil. 2011, 18, 210–222. [Google Scholar] [CrossRef]
- Lapitan, R.; Wanninkhof, R.; Mosier, A. Methods for stable gas flux determination in aquatic and terrestrial systems. In Developments in Atmospheric Science; Elsevier BV: Amsterdam, The Netherlands, 1999; pp. 29–66. [Google Scholar]
- Breuninger, C.; Oswald, R.; Kesselmeier, J.; Meixner, F.X. The dynamic chamber method: Trace gas exchange fluxes (NO, NO2, O3) between plants and the atmosphere in the laboratory and in the field. Atmos. Meas. Tech. 2012, 5, 955–989. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Knowledge Economy. 3rd National Greenhouse Gas Inventory Meeting; Ministry of Knowledge Economy: Gyeonggi, Korea, 2009.
- Greenhouse Gas Inventory & Research Center of Korea. National Greenhouse Inventory Report of Korea, Annuls; Greenhouse Gas Inventory & Research Center of Korea: Seoul, Korea, 2015. [Google Scholar]
- Park, K.-H.; Jeon, J.; Jeon, K.; Kwag, J.; Choi, D. Low greenhouse gas emissions during composting of solid swine manure. Anim. Feed. Sci. Technol. 2011, 166, 550–556. [Google Scholar] [CrossRef]
- Ji, E.S.; Park, K.-H. Methane and Nitrous Oxide Emissions from Livestock Agriculture in 16 Local Administrative Districts of Korea. Asian-Australas. J. Anim. Sci. 2012, 25, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.; Tae, S.; Kim, R. A Study on the Limitations of Korea’s National Roadmap for Greenhouse Gas Reduction by 2030 and Suggestions for Improvement. Sustainability 2019, 11, 3969. [Google Scholar] [CrossRef] [Green Version]
- Korean Statistical Service Information (KOSIS). Livestock Trend Survey in the Fourth Quarter of 2020; KOSIS: Daejon, Korea, 2019.
- Jo, N.; Kim, J.; Seo, S.-W. Comparison of models for estimating methane emission factor for enteric fermentation of growing-finishing Hanwoo steers. SpringerPlus 2016, 5, 1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Febrisiantosa, A.; Lee, J.; Choi, H. Greenhouse gas emissions from cattle production sector in Korea. Indones. J. Anim. Vet. Sci. 2016, 21, 112. [Google Scholar] [CrossRef] [Green Version]
- Rochette, P.; Bertrand, N. Soil air sample storage and handling using polypropylene syringes and glass vials. Can. J. Soil Sci. 2003, 83, 631–637. [Google Scholar] [CrossRef]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in Atmospheric Constituents and in Radiative Forcing. In Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 129–234. [Google Scholar]
- Wang, J.; Duan, C.; Ji, Y.; Sun, Y. Methane emissions during storage of different treatments from cattle manure in Tianjin. J. Environ. Sci. 2010, 22, 1564–1569. [Google Scholar] [CrossRef]
- Grossi, G.; Goglio, P.; Vitali, A.; Williams, A. Livestock and climate change: Impact of livestock on climate and mitigation strategies. Anim. Front. 2018, 9, 69–76. [Google Scholar] [CrossRef] [Green Version]
- McKinley, V.L.; Vestal, J.R. Physical and Chemical Correlates of Microbial Activity and Biomass in Composting Municipal Sewage Sludge. Appl. Environ. Microbiol. 1985, 50, 1395–1403. [Google Scholar] [CrossRef] [Green Version]
- Kapuinen, P. SE—Structures and Environment. J. Agric. Eng. Res. 2001, 80, 87–97. [Google Scholar] [CrossRef]
- Miyatake, F.; Iwabuchi, K.; Abe, Y.; Honda, Y. Effect of High Moisture Content on Temperature and Microbial Activity of Composting Dairy Cattle Manure. J. Jpn. Soc. Agric. Mach. 2007, 69, 48–54. [Google Scholar]
- Sommer, S.G. Eco-friendly and efficient management of solid animal manure. In Livestock Housing: Modern Management to Ensure Optimal Health and Welfare of Farm Animals; Aland, A., Banhazi, T., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; pp. 67–107. [Google Scholar]
- Eggleston, S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Hayama, Japan, 2006. [Google Scholar]
- Habtewold, J.; Gordon, R.; Sokolov, V.; Vanderzaag, A.; Wagner-Riddle, C.; Dunfield, K. Reduction in Methane Emissions from Acidified Dairy Slurry Is Related to Inhibition of Methanosarcina Species. Front. Microbiol. 2018, 9, 2806. [Google Scholar] [CrossRef] [PubMed]
- Petersen, S.O.; Olsen, A.B.; Elsgaard, L.; Triolo, J.; Sommer, S.G. Estimation of Methane Emissions from Slurry Pits below Pig and Cattle Confinements. PLoS ONE 2016, 11, e0160968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, Y.H. Sustainable nitrogen elimination biotechnologies: A review. Process. Biochem. 2006, 41, 1709–1721. [Google Scholar] [CrossRef]
- Di, H.-J.; Cameron, K.C.; Sherlock, R.R.; Shen, J.-P.; He, J.-Z.; Winefield, C. Nitrous oxide emissions from grazed grassland as affected by a nitrification inhibitor, dicyandiamide, and relationships with ammonia-oxidizing bacteria and archaea. J. Soils Sediments 2010, 10, 943–954. [Google Scholar] [CrossRef]
- Wunderlin, P.; Mohn, J.; Joss, A.; Emmenegger, L.; Siegrist, H. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Res. 2012, 46, 1027–1037. [Google Scholar] [CrossRef]
- National Research Council (NRC). Air Emissions from Animal Feeding Operations: Current Knowledge, Future Needs; National Academies Press: Washington, DC, USA, 2003. [Google Scholar]
- Mulbry, W.; Ahn, H. Greenhouse gas emissions during composting of dairy manure: Influence of the timing of pile mixing on total emissions. Biosyst. Eng. 2014, 126, 117–122. [Google Scholar] [CrossRef]
- Sharma, B.; Vaish, B.; Srivastava, V.; Singh, S.; Singh, P.; Singh, R.P.; Oves, M.; Khan, M.Z.; Ismail, I.M. An Insight to Atmospheric Pollution- Improper Waste Management and Climate Change Nexus. In Modern Age Environmental Problems and their Remediation; Springer Science and Business Media: Cham, Switzerland, 2017; pp. 23–47. [Google Scholar]
- Gilroyed, B.; Hao, X.; Larney, F.J.; McAllister, T.A. Greenhouse Gas Emissions from Cattle Feedlot Manure Composting and Anaerobic Digestion as a Potential Mitigation Strategy. In Understanding Greenhouse Gas Emissions from Agricultural Management; Guo, L., Gunasekara, A.S., McConnell, L.L., Eds.; American Chemical Society (ACS): Washington, DC, USA, 2011; pp. 419–441. [Google Scholar]
- Hao, X.; Chang, C.; Larney, F.J.; Travis, G.R. Greenhouse Gas Emissions during Cattle Feedlot Manure Composting. J. Environ. Qual. 2001, 30, 376–386. [Google Scholar] [CrossRef] [Green Version]
- Giuliana, D.; Fabrizio, A. The contribution of water soluble and water insoluble organic fractions to oxygen uptake rate during high rate composting. Biodegradation 2006, 18, 103–113. [Google Scholar] [CrossRef]
- Peigné, J.; Girardin, P. Environmental Impacts of Farm-Scale Composting Practices. Water Air Soil Pollut. 2004, 153, 45–68. [Google Scholar] [CrossRef]
- Joo, H.; Ndegwa, P.M.; Heber, A.; Ni, J.-Q.; Bogan, B.; Ramirez-Dorronsoro, J.; Cortus, E. Greenhouse gas emissions from naturally ventilated freestall dairy barns. Atmos. Environ. 2015, 102, 384–392. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Won, S.; Yoon, Y.; Hamid, M.M.A.; Reza, A.; Shim, S.; Kim, S.; Ra, C.; Novianty, E.; Park, K.-H. Estimation of Greenhouse Gas Emission from Hanwoo (Korean Native Cattle) Manure Management Systems. Atmosphere 2020, 11, 845. https://doi.org/10.3390/atmos11080845
Won S, Yoon Y, Hamid MMA, Reza A, Shim S, Kim S, Ra C, Novianty E, Park K-H. Estimation of Greenhouse Gas Emission from Hanwoo (Korean Native Cattle) Manure Management Systems. Atmosphere. 2020; 11(8):845. https://doi.org/10.3390/atmos11080845
Chicago/Turabian StyleWon, Seunggun, Youngbin Yoon, Muhammad Mahboob Ali Hamid, Arif Reza, Soomin Shim, Seungsoo Kim, Changsix Ra, Eliza Novianty, and Kyu-Hyun Park. 2020. "Estimation of Greenhouse Gas Emission from Hanwoo (Korean Native Cattle) Manure Management Systems" Atmosphere 11, no. 8: 845. https://doi.org/10.3390/atmos11080845
APA StyleWon, S., Yoon, Y., Hamid, M. M. A., Reza, A., Shim, S., Kim, S., Ra, C., Novianty, E., & Park, K. -H. (2020). Estimation of Greenhouse Gas Emission from Hanwoo (Korean Native Cattle) Manure Management Systems. Atmosphere, 11(8), 845. https://doi.org/10.3390/atmos11080845