Dendrochronological Reconstruction of June Drought (PDSI) from 1731–2016 for the Western Mongolian Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Dendrochronological Data
2.2. Climate Data
2.3. Statistical Analysis
3. Results
3.1. Master Chronology
3.2. Tree-Ring Response to Climate and Reconstruction of PDSI
3.3. Reconstructed Drought Variability
4. Discussion
4.1. Tree-Ring as an Indicator of Climatic Dryness in Western Mongolia
4.2. Wet and Dry Periods in Western Mongolia
4.3. Linkage to the Large-Scale Climate Forcing
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rahmstorf, S.; Coumou, D. Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. USA 2011, 108, 17905–17909. [Google Scholar] [CrossRef] [Green Version]
- Hessl, A.E.; Anchukaitis, K.J.; Jelsema, C.; Cook, B.; Byambasuren, O.; Leland, C.; Nachin, B.; Pederson, N.; Tian, H.; Hayles, L.A. Past and future drought in Mongolia. Sci. Adv. 2018, 4, e1701832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park Williams, A.; Allen, C.D.; Macalady, A.K.; Griffin, D.; Woodhouse, C.A.; Meko, D.M.; Swetnam, T.W.; Rauscher, S.A.; Seager, R.; Grissino-Mayer, H.D.; et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 2012, 3, 292–297. [Google Scholar] [CrossRef]
- Tejedor, E.; Saz, M.A.; Esper, J.; Cuadrat, J.M.; de Luis, M. Summer drought reconstruction in northeastern Spain inferred from a tree ring latewood network since 1734. Geophys. Res. Lett. 2017, 44, 8492–8500. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Li, Y.; Fu, C.; Chen, F.; Fu, Q.; Dai, A.; Shinoda, M.; Ma, Z.; Guo, W.; Li, Z.; et al. Dryland Climate Change: Recent Progress and Challenges: Dryland Climate Change. Rev. Geophys. 2017, 55, 719–778. [Google Scholar] [CrossRef]
- Wilhite, D.; Glantz, M. Understanding the drought phenomenon: The role of definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Cook, B.I.; Smerdon, J.E.; Seager, R.; Coats, S. Global warming and 21st century drying. Clim. Dyn. 2014, 43, 2607–2627. [Google Scholar] [CrossRef] [Green Version]
- Palmer, W.C. Meteorological Drought; Research Paper No. 45; US Weather Bureau: Washington, DC, USA, 1965; Volume 58.
- Dai, A. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Rind, D.; Goldberg, R.; Hansen, J.; Rosenzweig, C.; Ruedy, R. Potential evapotranspiration and the likelihood of future drought. J. Geophys. Res. Atmos. 1990, 95, 9983–10004. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Cook, E.R.; Seager, R.; Cane, M.A.; Stahle, D.W. North American drought: Reconstructions, causes, and consequences. Earth Sci. Rev. 2007, 81, 93–134. [Google Scholar] [CrossRef]
- Cai, Q.; Liu, Y.; Liu, H.; Ren, J. Reconstruction of drought variability in North China and its association with sea surface temperature in the joining area of Asia and Indian–Pacific Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 417, 554–560. [Google Scholar] [CrossRef]
- Yatagai, A.; Yasunari, T. rends and decadal-scale fluctuations of surface air temperature and precipitation over China and Mongolia during the recent forty-year period (1951–1990). J. Meteorol. Soc. Jpn. 1994, 72, 937–957. [Google Scholar] [CrossRef] [Green Version]
- Davi, N.K.; Jacoby, G.C.; D’Arrigo, R.D.; Baatarbileg, N.; Jinbao, L.; Curtis, A.E. A tree-ring-based drought index reconstruction for far-western Mongolia: 1565–2004. Int. J. Clim. 2009, 29, 1508–1514. [Google Scholar] [CrossRef]
- Sato, T. Regional Climate Simulations to Diagnose Environmental Changes in Mongolia; Bulletin of the Terrestrial Environment Research Center, University of Tsukuba: Tsukuba, Japan, 2006; pp. 59–69. [Google Scholar]
- Pederson, N.; Jacoby, C.G.; D’Arrigo, R.; Cook, E.; Buckley, M.B.; Dugarjav, C.; Mijiddorj, R. Hydrometeorological Reconstructions for Northeastern Mongolia Derived from Tree Rings: 1651–1995. J. Clim. 2001, 14, 872–881. [Google Scholar] [CrossRef]
- Davi, N.K.; Jacoby, G.C.; Curtis, A.E.; Baatarbileg, N. Extension of Drought Records for Central Asia Using Tree Rings: West-Central Mongolia. J. Clim. 2006, 19, 288–299. [Google Scholar] [CrossRef]
- Jacoby, G.; Pederson, N.; D’Arrigo, R. Temperature and precipitation in Mongolia based on dendroclimatic investigations. Chin. Sci. Bull. 2003, 48, 1474–1479. [Google Scholar]
- Schweingruber, F. Tree Rings: Basics and Applications of Dendrochronology; Reidel, D., Ed.; Springer: Dordrecht, The Netherlands, 1988; pp. 78–79. [Google Scholar]
- Liu, Y.; Wang, Y.; Li, Q.; Song, H.; Linderholm, H.W.; Leavitt, S.W.; Wang, R.; An, Z. Tree-ring stable carbon isotope-based May–July temperature reconstruction over Nanwutai, China, for the past century and its record of 20th century warming. Quat. Sci. Rev. 2014, 93, 67–76. [Google Scholar] [CrossRef]
- Li, J.; Xie, S.-P.; Cook, E.R.; Morales, M.S.; Christie, D.A.; Johnson, N.C.; Chen, F.; D’Arrigo, R.; Fowler, A.M.; Gou, X. El Niño modulations over the past seven centuries. Nat. Clim. Chang. 2013, 3, 822. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Shang, H.; Yu, S.; He, Q.; Yuan, Y.; Bolatov, K.; Mambetov, B.T. Tree-ring-based precipitation reconstruction in southern Kazakhstan, reveals drought variability since A.D. 1770. Int. J. Clim. 2017, 37, 741–750. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Song, H.; Cai, Q.; Li, Q.; Zhao, B.; Liu, H.; Mei, R. Tree-ring-width-based PDSI reconstruction for central Inner Mongolia, China over the past 333 years. Clim. Dyn. 2016, 48, 867–879. [Google Scholar] [CrossRef]
- Jiang, P.; Liu, H.; Wu, X.; Wang, H. Tree-ring-based SPEI reconstruction in central Tianshan Mountains of China since A.D. 1820 and links to westerly circulation. Int. J. Clim. 2017, 37, 2863–2872. [Google Scholar] [CrossRef]
- Cook, E.; Meko, D.; Stahle, D.; Cleaveland, M. Drought Reconstructions for the Continental United States. J. Clim. 1999, 12, 1145–1162. [Google Scholar] [CrossRef] [Green Version]
- Stahle, D.W.; Fye, F.K.; Cook, E.R.; Griffin, R.D. Tree-ring reconstructed megadroughts over North America since a.d. 1300. Clim. Chang. 2007, 83, 133–149. [Google Scholar] [CrossRef]
- Zhao, F.; Fan, Z.; Su, T.; Li, S.; Tang, H.; Spicer, T.E.; Zhou, Z.J.P. Palaeoclimatology, Palaeoecology. Tree-ring δ18O inferred spring drought variability over the past 200 years in the Hengduan Mountains, Southwest China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 518, 22–33. [Google Scholar] [CrossRef]
- Nicault, A.; Alleaume, S.; Brewer, S.; Carrer, M.; Nola, P.; Guiot, J.J.C.D. Mediterranean drought fluctuation during the last 500 years based on tree-ring data. Clim. Dyn. 2008, 31, 227–245. [Google Scholar] [CrossRef]
- D’Arrigo, R.; Jacoby, G.; Frank, D.; Pederson, N.; Cook, E.; Buckley, B.; Nachin, B.; Mijiddorj, R.; Dugarjav, C. 1738 years of Mongolian temperature variability inferred from a tree-ring width chronology of Siberian pine. Geophys. Res. Lett. 2001, 28, 543–546. [Google Scholar] [CrossRef] [Green Version]
- Gunin, P.; Vostokova, E.A.; Dorofeyuk, N.I.; Tarasov, P.; Black, C.C. Vegetation Dynamics of Mongolia; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; pp. 7–43. [Google Scholar]
- Liu, J.; Fang, X.; Tang, X.; Wang, W.; Zhou, G.; Xu, S.; Huang, W.; Wang, G.; Yan, J.; Ma, K.; et al. Patterns and controlling factors of plant nitrogen and phosphorus stoichiometry across China’s forests. Biogeochemistry 2019, 143, 191–205. [Google Scholar] [CrossRef]
- Wang, T.; Ren, H.; Ma, K. Climatic signals in tree ring of Picea schrenkiana along an altitudinal gradient in the central Tianshan Mountains, northwestern China. Trees 2005, 19, 736–742. [Google Scholar] [CrossRef]
- Cook, E.R.; Kariukstis, L.A. Methods of Dendrochronology: Applications in the Environmental Sciences; Springer, Kluwer: Dordrecht, The Netherlands, 1990; pp. 98–102. [Google Scholar]
- Grissino-Mayer, H.D. Evaluating crossdating accuracy: A manual and tutorial for the computer program cofecha. Tree Ring Res. 2001, 57, 205–221. [Google Scholar]
- Cook, E.R. A Time Series Analysis Approach to Tree-Ring Standardization; The University of Arizona: Tucson, AZ, USA, 1985. [Google Scholar]
- Melvin, T.M.; Briffa, K.R. A “Signal-Free” approach to dendroclimatic Standardization. Dendrochronologia 2008, 26, 71–86. [Google Scholar] [CrossRef]
- Cook, E. The Decomposition of Tree-Ring Series for Evnironmental Studies. Tree-Ring Bull. 1987, 47, 37–59. [Google Scholar]
- Fritts, H.C. Tree Rings and Climate; Cambridge University Press: Cambridge, UK, 1976; Volume 15, pp. 567–568. [Google Scholar]
- Michaelsen, J. Cross-Validation in Statistical Climate Forecast Models; American Meteorological Society: Massachusetts, MA, USA, 1987; Volume 26, pp. 1589–1600. [Google Scholar]
- Fritts, H.C.; Joel, G.; Gordon, G.A.; Schweingruber, F. Methods of Calibration, Verification, and Reconstruction; Springer: Dordrecht, The Netherlands, 1990; pp. 163–217. [Google Scholar]
- Mann, M.; Lees, J. Robust Estimation of Background Noise and Signal Detection in Climatic Time Series. Climatic Change. 1996, 33, 409–445. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Liang, E.; Dawadi, B.; Pederson, N.; Eckstein, D. Is the growth of birch at the upper timberline in the Himalayas limited by moisture or by temperature? Ecology 2014, 95, 2453–2465. [Google Scholar] [CrossRef] [Green Version]
- Speer, J.H. Fundamentals of Tree-Ring Research; University of Arizona Press: Tucson, AZ, USA, 2010; pp. 43–49. [Google Scholar]
- Kharal, D.K.; Thapa, U.K.; George, S.S.; Meilby, H.; Rayamajhi, S.; Bhuju, D.R. Tree-climate relations along an elevational transect in Manang Valley, central Nepal. Dendrochronologia 2017, 41, 57–64. [Google Scholar] [CrossRef]
- Laio, F.; Porporato, A.; Ridolfi, L.; Rodriguez-Iturbe, I. Plants in water-controlled ecosystems: Active role in hydrologic processes and response to water stress: II. Probabilistic soil moisture dynamics. Adv. Water Resour. 2001, 24, 707–723. [Google Scholar] [CrossRef]
- Sugimoto, A.; Yanagisawa, N.; Naito, D.; Fujita, N.; Maximov, T.C. Importance of permafrost as a source of water for plants in East Siberian taiga. Ecol. Res. 2002, 17, 493–503. [Google Scholar] [CrossRef]
- Bao, G.; Liu, Y.; Linderholm, H.W. April–September mean maximum temperature inferred from Hailar pine (Pinus sylvestris var. mongolica) tree rings in the Hulunbuir region, Inner Mongolia, back to 1868 AD. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 313, 162–172. [Google Scholar] [CrossRef]
- Liang, E.; Shao, X.; Liu, H.; Eckstein, D. Tree-ring based PDSI reconstruction since AD 1842 in the Ortindag Sand Land, east Inner Mongolia. Chin. Sci. Bull. 2007, 52, 2715–2721. [Google Scholar] [CrossRef]
- Fang, K.; Gou, X.; Chen, F.; Li, J.; D’Arrigo, R.; Cook, E.; Yang, T.; Davi, N. Reconstructed droughts for the southeastern Tibetan Plateau over the past 568 years and its linkages to the Pacific and Atlantic Ocean climate variability. Clim. Dyn. 2009, 35, 577–585. [Google Scholar] [CrossRef]
- Shah, S.K.; Bhattacharyya, A. Spatio-temporal growth variability of three Pinus species of Northeast Himalaya with relation to climate. Dendrochronologia 2012, 30, 266–278. [Google Scholar] [CrossRef]
- Gaire, N.P.; Bhuju, D.R.; Koirala, M.; Shah, S.K.; Carrer, M.; Timilsena, R. Tree-ring based spring precipitation reconstruction in western Nepal Himalaya since AD 1840. Dendrochronologia 2017, 42, 21–30. [Google Scholar] [CrossRef]
- Davi, N.K.; D’Arrigo, R.; Jacoby, G.C.; Cook, E.R.; Anchukaitis, K.J.; Nachin, B.; Rao, M.P.; Leland, C. A long-term context (931–2005 C.E.) for rapid warming over Central Asia. Quat. Sci. Rev. 2015, 121, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Pederson, N.; Leland, C.; Nachin, B.; Hessl, A.E.; Bell, A.R.; Martin-Benito, D.; Saladyga, T.; Suran, B.; Brown, P.M.; Davi, N.K. Three centuries of shifting hydroclimatic regimes across the Mongolian Breadbasket. Agric. For. Meteorol. 2013, 178–179, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Liang, E.Y.; Shao, X.M.; Xu, Y. Tree-ring evidence of recent abnormal warming on the southeast Tibetan Plateau. Appl. Clim. 2009, 98, 9–18. [Google Scholar] [CrossRef]
- Borgaonkar, H.P.; Sikder, A.B.; Ram, S.; Pant, G.B. El Niño and related monsoon drought signals in 523-year-long ring width records of teak (Tectona grandis L.F.) trees from south India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 285, 74–84. [Google Scholar] [CrossRef]
- Panthi, S.; Bräuning, A.; Zhou, Z.-K.; Fan, Z.-X. Tree rings reveal recent intensified spring drought in the central Himalaya, Nepal. Glob. Planet. Chang. 2017, 157, 26–34. [Google Scholar] [CrossRef]
- Gaire, N.P.; Dhakal, Y.R.; Shah, S.K.; Fan, Z.-X.; Bräuning, A.; Thapa, U.K.; Bhandari, S.; Aryal, S.; Bhuju, D.R. Drought (scPDSI) reconstruction of trans-Himalayan region of central Himalaya using Pinus wallichiana tree-rings. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 514, 251–264. [Google Scholar] [CrossRef]
- Meehl, G. The Annual Cycle and Interannual Variability in the Tropical Pacific and Indian Ocean Regions. Mon. Weather Rev. 1987, 115, 27. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Zhu, H.; Liang, E.; Liu, B.; Shi, J.; Zhang, R.; Yuan, Y.; Grießinger, J. A tree ring-based winter temperature reconstruction for the southeastern Tibetan Plateau since 1340 CE. Clim. Dyn. 2019, 53, 3221–3233. [Google Scholar] [CrossRef]
- Linderholm, H.; Seim, A.; Ou, T.; Jeong, J.-H.; Liu, Y.; Wang, X.; Bao, G.; Folland, C. Exploring teleconnections between the summer NAO (SNAO) and climate in East Asia over the last four centuries—A tree-ring perspective. Dendrochronologia 2013, 31, 297–310. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.; Fu, J.X. Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J. Clim. 2000, 13, 1517–1536. [Google Scholar] [CrossRef]
- Zhang, R.; Sumi, A.; Kimoto, M. A diagnostic study of the impact of El Nino on the precipitation in China. Adv. Atmos. Sci. 1999, 16, 229–241. [Google Scholar] [CrossRef]
- Dai, A.; Wigley, T.M.L. Global Patterns of ENSO-induced Precipitation. Geophys. Res. Lett. 2000, 27, 1283–1286. [Google Scholar] [CrossRef] [Green Version]
- Raspopov, O.M.; Dergachev, V.A.; Kolström, T. Periodicity of climate conditions and solar variability derived from dendrochronological and other palaeoclimatic data in high latitudes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 209, 127–139. [Google Scholar] [CrossRef]
Calibration (1965–1990) | Verification (1991–2016) | Calibration (1991–2016) | Verification (1965–1990) | Calibration (1965–2016) | |
---|---|---|---|---|---|
r | 0.589 | 0.635 | 0.635 | 0.589 | 0.606 |
R2 | 0.347 | 0.403 | 0.403 | 0.347 | 0.366 |
R2ad | 0.319 | 0.377 | 0.354 | ||
F | 12.72 | 16.25 | 28.95 | ||
RE | 0.340 | 0.399 | |||
CE | 0.340 | 0.398 | |||
ST | 18+/8− * | 22+/4− ** |
Rank | Driest Year | Wettest Year | ||
---|---|---|---|---|
Year | PDSI | Year | PDSI | |
1 | 1911 | −4.38 | 1881 | 4.07 |
2 | 1912 | −4.38 | 1854 | 2.42 |
3 | 1739 | −3.84 | 1934 | 2.33 |
4 | 1740 | −3.78 | 1935 | 2.25 |
5 | 1902 | −3.77 | 2011 | 2.13 |
6 | 1782 | −3.75 | 1880 | 1.87 |
7 | 1913 | −3.69 | 1803 | 1.60 |
8 | 1943 | −3.66 | 1933 | 1.58 |
9 | 1826 | −3.61 | 1788 | 1.51 |
10 | 2002 | −3.58 | 1853 | 1.43 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Li, G.; Liu, H.; Dech, J.P.; Zhou, M.; Zhao, P.; Ren, Z. Dendrochronological Reconstruction of June Drought (PDSI) from 1731–2016 for the Western Mongolian Plateau. Atmosphere 2020, 11, 839. https://doi.org/10.3390/atmos11080839
Shi L, Li G, Liu H, Dech JP, Zhou M, Zhao P, Ren Z. Dendrochronological Reconstruction of June Drought (PDSI) from 1731–2016 for the Western Mongolian Plateau. Atmosphere. 2020; 11(8):839. https://doi.org/10.3390/atmos11080839
Chicago/Turabian StyleShi, Liang, Guangxin Li, Hongyan Liu, Jeffery P. Dech, Mei Zhou, Pengwu Zhao, and Zhong Ren. 2020. "Dendrochronological Reconstruction of June Drought (PDSI) from 1731–2016 for the Western Mongolian Plateau" Atmosphere 11, no. 8: 839. https://doi.org/10.3390/atmos11080839
APA StyleShi, L., Li, G., Liu, H., Dech, J. P., Zhou, M., Zhao, P., & Ren, Z. (2020). Dendrochronological Reconstruction of June Drought (PDSI) from 1731–2016 for the Western Mongolian Plateau. Atmosphere, 11(8), 839. https://doi.org/10.3390/atmos11080839