Statistical Analysis of Microphysical and Dynamical Parameters for Clouds and Precipitation over Nauq Tibetan Plateau in Summertime Using Ka-band Cloud Radar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Instrument Descriptions
2.2. Data Processing Methods
2.3. Cloud Clustering and Classification Algorithm Description
3. Results
3.1. Base and Spectral Data Quality Control and Post Processing
3.2. Vertical Distributions of Reflectivity and the Retrieved Microphysical and Dynamical Parameters
3.3. Diurnal Variations of the Averaged Reflectivity, Vertical Air Motion, and Hydrometeor Terminal Fall Speed
3.4. The Characteristics and Diurnal Variations for Different Cloud Types
4. Discussion on Biases of Vertical Air Motion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, G.X.; Chen, S. The effect of mechanical forcing on the formation of a mesoscale vortex. Q. J. R. Meteorol. Soc. 1985, 111, 1049–1070. [Google Scholar] [CrossRef]
- Yanai, M.; Li, C.; Song, Z. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteorol. Soc. Jpn. 1992, 70, 319–351. [Google Scholar] [CrossRef] [Green Version]
- Boos, W.R.; Kuang, Z. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 2010, 463, 218–222. [Google Scholar] [CrossRef]
- Qin, H.D.; Liu, J.X. Statistical Characteristic of Radar Echo for Convective Precipitation. Collected Thesis on Meteorological Experiment in Qinghai-Xizang Plateau (in Chinese); Science Press: Beijing, China, 1984; pp. 258–268. [Google Scholar]
- Qin, H.D. Atmospheric static energy for convective processes at Naqu in Tibetan. Plateau Meteorol. 1983, 2, 61–65. (In Chinese) [Google Scholar]
- Liu, L.P.; Chu, R.Z.; Song, X.M.; Zhou, Y.J.; Feng, J.M.; Chen, C.P.; Zhang, T.; Shimizu, S.; Ueno, K.; Koike, T.; et al. Summary and preliminary results of cloud and precipitation observation in Qinghai-Xizang Plateau in GAME-TIBET. Plateau Meteorol. 1999, 18, 441–450. (In Chinese) [Google Scholar]
- Shimizu, S.; Ueno, K.; Fujii, H.; Yamada, H.; Shirooka, R.; Liu, L. Mesoscale characteristics and structure of stratiform precipitation on the Tibetan Plateau. J. Meteor. Soc. Jpn. 2001, 79, 435–461. [Google Scholar] [CrossRef] [Green Version]
- Uyeda, H.; Yamada, H.; Horikomi1, J. Characteristics of convective clouds observed by a Doppler radar at Naqu on Tibetan Plateau during the GAME-Tibet IOP. J. Meteor. Soc. Jpn. 2001, 79, 463–474. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.P.; Feng, J.M.; Chu, R.Z.; Zhou, Y.J.; Ueno, K. Diurnal variation of precipitation in monsoon season in the Tibetan Plateau. Adv. Atmos. Sci. 2002, 19, 365–378. [Google Scholar]
- Liu, L.P. Simulation and analysis on observational errors of cloud intensity and structure with TRMM PR and ground-based radar. J. Meteor. Res. 2003, 17, 376–384. [Google Scholar]
- Fu, Y.F.; Li, H.T.; Zi, Y. Case study of precipitation cloud structure viewed by TRMM satellite in a valley of the Tibetan Plateau. Plateau Meteorol. 2007, 26, 98–106. (In Chinese) [Google Scholar]
- Dai, J.; Yu, X.; Liu, G.; Xu, X.; Yue, Z.; Sun, W.; Yang, F. Satellite retrieval analysis on microphysical property of thunderstorm with light precipitation over the Qinghai-Xizang Plateau. Plateau Meteorol. 2011, 30, 288–298. (In Chinese) [Google Scholar]
- Li, D.; Bai, A.J.; Huang, S.J. Characteristic analysis of a severe convective weather over Tibetan Plateau based on TRMM Data. Plateau Meteorol. 2012, 31, 304–311. (In Chinese) [Google Scholar]
- Li, L.G.; De, L. Analyses of microphysical features for spring precipitation cloud layers in east of Qinghai. Plateau Meteorol. 2001, 20, 191–196. (In Chinese) [Google Scholar]
- Zhao, S.X.; Chen, W.H.; Hang, H.Z. Analysis on precipitation altostratus microphysical structure in spring over north-east Qinghai. Plateau Meteorol. 2002, 21, 281–287. [Google Scholar]
- Zhao, P.; Xu, X.; Chen, F.; Guo, X.; Zheng, X.; Lu, L.; Hong, Y.; Li, Y.; La, Z.; Peng, H.; et al. The third atmospheric scientific experiment for understanding the earth–atmosphere coupled system over the Tibetan Plateau and its effects. Bull. Amer. Meteor. Soc. 2018, 99, 757–776. [Google Scholar] [CrossRef]
- Liu, L.P.; Zheng, J.; Ruan, Z.; Cui, Z.; Hu, Z.; Wu, S.; Dai, G.; Wu, Y. Comprehensive radar observations of clouds and precipitation over the Tibetan Plateau and preliminary analysis of cloud properties. J. Meteor. Res. 2015, 29, 546–561. [Google Scholar] [CrossRef]
- Gao, W.; Sui, C.; Fan, J.; Hu, Z.; Zhong, L. A study of cloud microphysics and precipitation over the Tibetan Plateau by radar observations and cloud-resolving model simulations. J. Geophys. Res. Atmos. 2016, 121, 13735–13752. [Google Scholar] [CrossRef]
- Gao, W.; Liu, L.; Li, J.; Lu, C. The microphysical properties of convective precipitation over the Tibetan Plateau by a subkilometer resolution cloud-resolving simulation. J. Geophys. Res. Atmos. 2018, 123, 3212–3227. [Google Scholar] [CrossRef]
- Chang, Y.; Guo, X.L. Characteristics of convective cloud and precipitation during summer time at Naqu over Tibetan Plateau. Chin. Sci. Bull. 2016, 61, 1706–1720. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.F.; Liu, L.P.; Wang, Q.Q.; Qiu, Y.; Wang, W.; Wang, Y. Toward understanding the properties of high ice clouds at the Naqu site on the Tibetan Plateau using ground-based active remote sensing measurements obtained during a short period in July 2014. J. Appl. Meteorol. Climatol. 2016, 55, 2493–2507. [Google Scholar] [CrossRef]
- Zheng, J.F.; Liu, L.P.; Zhu, K.Y.; Wu, J.Y.; Wang, B.Y. A method for retrieving vertical air velocities in convective clouds over the Tibetan Plateau from TIPEX-III cloud radar Doppler spectra. Remote Sens. 2017, 964. [Google Scholar] [CrossRef] [Green Version]
- Fujinami, H.; Yasunari, T. The seasonal and intraseasonal variability of diurnal cloud activity over the Tibetan Plateau. J. Meteorol. Soc. Jpn. 2001, 79, 1207–1227. [Google Scholar] [CrossRef] [Green Version]
- He, Q.S.; Li, C.C.; Ma, J.Z.; Wang, H.Q.; Shi, G.M.; Liang, Z.R.; Luan, Q.; Geng, F.H.; Zhou, X.W. The properties and formation of cirrus clouds over the Tibetan Plateau based on summertime lidar measurements. J. Atmos. Sci. 2013, 70, 901–915. [Google Scholar] [CrossRef]
- Wang, H.; Guo, X.L. Comparative analyses of vertical structure of a deep convective cloud with multi-source satellite and ground-based radar observational data at Naqu over the Tibetan Plateau. Acta Meteorol. Sin. 2018, 76, 996–1013. [Google Scholar]
- Liu, L.P.; Xie, L.; Cui, Z. Examination and application of Doppler spectral density data in drop size distribution retrieval in weak precipitation by cloud radar. Chin. J. Atmos. Sci. 2014, 38, 223–236. (In Chinese) [Google Scholar]
- Liu, L.; Zheng, J. Algorithms for Doppler Spectral Density Data Quality Control and Merging for the Ka-Band Solid-State Transmitter Cloud Radar. Remote Sens. 2019, 11, 209. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Teng, X.; Ji, L.; Zhao, F. A study of the relationship between the attenuation coefficient and radar reflectivity factor for spherical particles in clouds at millimeter wavelengths (in Chinese with English abstract). Acta Meteor Sinica. 2011, 69, 1020–1028. [Google Scholar]
- Rossow, W.B.; Schiffer, R.A. Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc. 1999, 80, 2261–2286. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Sassen, K. Cloud type and macro-physical property retrieval using multiple remote sensors. J. Appl. Meteorol. 2001, 40, 1665–1682. [Google Scholar] [CrossRef]
- Johnson, J.T.; MacKeen, P.L.; Witt, A.; Mitchell, E.D.W.; Stumpf, G.J.; Eilts, M.D.; Thomas, K.W. The storm cell identification and tracking algorithm: An enhanced WSR-88D algorithm. Wea. Forecasting 1988, 13, 263–276. [Google Scholar] [CrossRef] [Green Version]
- Huo, J.; Bi, Y.; Lü, D.; Duan, S. Cloud classification and distribution of cloud types in Beijing using Ka-band radar data. Adv. Atmos. Phys. 2019, 36, 793–803. [Google Scholar]
- Barber, P.; Yeh, C. Scattering of electromagnetic wave by arbitrarily shaped dielectric bodies. Appl. Opt. 1975, 14, 2864–2872. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Fu, Y. Analysis on climatological characteristics of deep and shallow precipitation cloud in summer over Qinghai-Xizang Plateau. Plateau Meteorol. 2015, 34, 1191–1203. [Google Scholar]
- Heymsfield, A.J.; Westbrook, C.D. Advances in the estimation of ice particle fall speeds using laboratory and field measurements. J. Atmos. Sci. 2010, 67, 2469–2482. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, D.L. Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci. 1996, 53, 1710–1723. [Google Scholar] [CrossRef]
- Liu, L.; Run, Z.; Zheng, J.; Gao, W. Comparing and Merging Observation Data from Ka-Band Cloud Radar, C-Band Frequency-Modulated Continuous Wave Radar and Ceilometer Systems. Remote. Sens. 2017, 9, 1282. [Google Scholar] [CrossRef] [Green Version]
- Yuan, T.; Heale, C.J.; Snively, J.B.; Cai, X.; Pautet, P.D.; Fish, C.; Zhao, Y.; Taylor, M.J.; Pendleton, W.R., Jr.; Wickwar, V.; et al. Evidence of dispersion and refraction of a spectrally broad gravity wave packet in the mesopause region observed by the Na lidar and Mesospheric Temperature Mapper above Logan, Utah. J. Geophys. Res. Atmos. 2016, 121, 579–594. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; She, C.Y.; Liu, H.L.; Montgomery, M.T. Evidence of a gravity wave breaking event and the estimation of wave characteristics from sodium lidar observation over Fort Collins, CO (41° N, 105° W). Geophys. Res. Lett. 2017, 34, L05815. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Yuan, T.; Zhao, Y.; Pautet, P.D.; Taylor, M.J.; Pendleton, W.R., Jr. A coordinated investigation of the gravity wave breaking and the associated dynamical instability by a Na lidar and an Advanced Mesosphere Temperature Mapper over Logan, UT (41.7° N, 111.8° W). J. Geophys. Res. Space Phys. 2014, 119, 6852–6864. [Google Scholar] [CrossRef]
- Shupe, M.D.; Koliias, P.; Matrosov, M.; Eloranta, E. On deriving vertical air motions from cloud radar Doppler spectra. J. Atmos. Ocean. Technol. 2008, 25, 547–557. [Google Scholar] [CrossRef] [Green Version]
Order | Items | Technical Specifications |
---|---|---|
General technical parameters of the cloud radar system | ||
1 | Radar system | Coherent, pulsed Doppler, solid-state transmitter, pulse compression |
2 | Radar frequency | 33.44 GHz (Ka-band) |
3 | Beam width | 0.35° |
4 | Pulse repeat frequency | 8333 Hz |
5 | Detecting parameters | reflectivity, radial velocity, spectrum width, linear depolarization ratio, Doppler spectral density |
6 | Detection capability | ≤−30 dBZ at 5 km |
7 | Range of detection | Height: 0.120–15 km Reflectivity: −50 dBZ to +30 dBZ Radial velocity: −18.67 m·s−1 to 18.67 m·s−1 (maximum) |
8 | Spatial and temporal resolutions | Temporal resolution: 9 s (adjustable) Height resolution: 30 m |
Order | Items | Boundary Mode (M1) | Cirrus Mode (M2) | Precipitation Mode (M3) |
---|---|---|---|---|
1 | τ (μs) | 0.2 | 12 | 0.2 |
2 | PRF (HZ) | 8333 | 8333 | 8333 |
3 | Ncoh | 4 | 2 | 1 |
4 | Nncoh | 16 | 32 | 64 |
5 | NFFT | 256 | 256 | 256 |
6 | Dwell time (s) | 2 | 2 | 2 |
7 | Numgate | 500 | 500 | 500 |
8 | Rspace (m) | 30 | 30 | 30 |
9 | Rmin (m) | 30 (theoretical) 120 (practical) | 1800 (theoretical) 2010 (practical) | 30 (theoretical) 120 (practical) |
10 | Rmax (km) | 18 | 18 | 18 |
11 | Vmax (m·s−1) | 4.67 | 9.34 | 18.67 |
12 | △V (m·s−1) | 0.036 | 0.072 | 0.145 |
No. | Parameter | Weight | Coefficients | Cloud Types | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cir | As | Ac | St | Sc | Cu | Ns | Dc | ||||
1 | Htop (km) | 1.0 | A1 | 6.5 | 4.0 | 4.0 | 0.5 | 0.5 | 0.5 | 1.0 | 2.5 |
A2 | 7.0 | 4.5 | 4.5 | 1.0 | 1.5 | 3.5 | 4.0 | 7.0 | |||
A3 | 13.0 | 6.5 | 7.0 | 4.5 | 5.0 | 7.0 | 5.0 | 10.0 | |||
A4 | 15.0 | 8.0 | 9.0 | 5.0 | 5.5 | 15.0 | 8.0 | 15.0 | |||
2 | Hbase (km) | 1.0 | A1 | 6.0 | 1.0 | 1.0 | 0.4 | 0.5 | 1.0 | 0.0 | 0.0 |
A2 | 6.5 | 3.0 | 2.0 | 0.5 | 0.5 | 3.0 | 0.3 | 0.3 | |||
A3 | 10.0 | 4.5 | 4.5 | 2.0 | 2.0 | 5.0 | 3.0 | 3.0 | |||
A4 | 11.0 | 5.0 | 5.0 | 2.5 | 2.5 | 5.5 | 3.5 | 3.5 | |||
3 | Hmaxz (km) | 1.0 | A1 | 6.0 | 1.0 | 1.0 | 0.1 | 0.5 | 1.0 | 1.0 | 0.5 |
A2 | 7.0 | 3.5 | 3.5 | 0.5 | 1.5 | 2.5 | 2.5 | 1.5 | |||
A3 | 12.0 | 5.0 | 5.0 | 3.0 | 3.0 | 4.0 | 4.0 | 8.0 | |||
A4 | 12.5 | 6.0 | 6.0 | 4.0 | 4.0 | 5.0 | 5.0 | 10.5 | |||
4 | Dh (km) | 1.0 | A1 | 0.2 | 0.5 | 0.5 | 0.5 | 0..5 | 1.5 | 1.5 | 4.0 |
A2 | 0.6 | 1.5 | 2.0 | 1.0 | 1.5 | 2.5 | 2.5 | 5.0 | |||
A3 | 3.0 | 3.5 | 5.5 | 3.0 | 4.0 | 6.0 | 6.0 | 10.0 | |||
A4 | 4.5 | 4.5 | 6.0 | 4.0 | 5.0 | 8.0 | 8.5 | 12.0 | |||
5 | Dhmax (km) | 1.0 | A1 | 0.4 | 0.5 | 1.0 | 0.5 | 0.7 | 1.5 | 1.5 | 6.0 |
A2 | 1.5 | 2.5 | 3.0 | 1.0 | 2.0 | 2.5 | 3.0 | 8.0 | |||
A3 | 4.0 | 6.0 | 6.0 | 4.0 | 5.0 | 7.5 | 7.0 | 10.0 | |||
A4 | 4.5 | 8.0 | 8.5 | 6.0 | 6.0 | 8.8 | 8.5 | 12.0 | |||
6 | Zmax (dBZ) | 1.0 | A1 | −40 | −35 | −35 | −35 | −35 | −40 | −10 | 4.5 |
A2 | −35 | −25 | −20 | −15 | −15 | −20 | 5 | 15 | |||
A3 | −25 | −15 | −10 | −5 | −5 | 0 | 15 | 45 | |||
A4 | −20 | −10 | −5 | 0 | 0 | 1 | 18 | 50 | |||
7 | Vmax (ms−1) | 1.0 | A1 | −2.0 | −2.0 | −2.0 | −2.0 | −1.0 | 0.0 | −2.0 | 1.5 |
A2 | −1.0 | −1.0 | 0.0 | −1.0 | 0.0 | 1.0 | −1.0 | 2.0 | |||
A3 | 1.0 | 1.0 | 2.0 | 1.0 | 2.0 | 3.5 | 1.0 | 3.0 | |||
A4 | 1.5 | 1.5 | 3.0 | 1.5 | 3.0 | 5.5 | 2.5 | 10.0 | |||
8 | Chr (h) | 1.0 | A1 | 0.3 | 0.5 | 0.2 | 0.5 | 0.3 | 1.0 | 1.0 | 0.5 |
A2 | 0.5 | 2.5 | 0.3 | 1.0 | 0.4 | 1.2 | 1.5 | 1.0 | |||
A3 | 1.5 | 4.0 | 0.5 | 3.0 | 0.6 | 2.5 | 5.0 | 5.0 | |||
A4 | 2.0 | 4.5 | 1.0 | 3.5 | 1.0 | 4.5 | 5.5 | 7.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Gao, W. Statistical Analysis of Microphysical and Dynamical Parameters for Clouds and Precipitation over Nauq Tibetan Plateau in Summertime Using Ka-band Cloud Radar. Atmosphere 2020, 11, 818. https://doi.org/10.3390/atmos11080818
Liu L, Gao W. Statistical Analysis of Microphysical and Dynamical Parameters for Clouds and Precipitation over Nauq Tibetan Plateau in Summertime Using Ka-band Cloud Radar. Atmosphere. 2020; 11(8):818. https://doi.org/10.3390/atmos11080818
Chicago/Turabian StyleLiu, Liping, and Wenhua Gao. 2020. "Statistical Analysis of Microphysical and Dynamical Parameters for Clouds and Precipitation over Nauq Tibetan Plateau in Summertime Using Ka-band Cloud Radar" Atmosphere 11, no. 8: 818. https://doi.org/10.3390/atmos11080818
APA StyleLiu, L., & Gao, W. (2020). Statistical Analysis of Microphysical and Dynamical Parameters for Clouds and Precipitation over Nauq Tibetan Plateau in Summertime Using Ka-band Cloud Radar. Atmosphere, 11(8), 818. https://doi.org/10.3390/atmos11080818