Energy Balances and Greenhouse Gas Emissions of Agriculture in the Shihezi Oasis of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
- (a)
- SZC sub-oasis, with a total area of 37.58 × 103 ha, of which 20.5 × 103 ha is cultivated, sits on an inclined piedmont plain. The Manasi River winds its way through the northeast of the sub-oasis; other surface and groundwater sources are abundant, and in a rural zone of Shihezi City, a freshwater spring overflow is used for flood (border dyke) irrigation;
- (b)
- XYD sub-oasis, with a total area of 300 × 103 ha, of which 61 × 103 ha is cultivated, lies where the Manasi River downstream oasis system and Gurban Tunggut Desert overlap;
- (c)
- MSW sub-oasis, with a total area of 137 × 103 ha, of which 44 × 103 ha is cultivated, lies where the Manasi River allows the sub-oasis to cut through the Gurban Tunggut Desert for a distance of 60 km.
2.2. Data Collection
2.3. Goal and Scope Definition
2.4. Functional Unit
2.5. Calculation of Energy Balances
2.6. Calculation of GHG Emissions
2.7. Calculation of Carbon Economic Efficiency
2.8. Calculation of Water Use Efficiency
2.9. Statistical Analyses
3. Results
3.1. Yield and Water Use of Crop Production
3.2. Energy Balances, Net Energy Ratio, and Water Use Efficiency of Agricultural Production
3.3. GHG Emissions and Carbon Economic Efficiency of Agriculture Production
3.4. Water Use Efficiency Based on Energy
3.5. Contribution of Carbon Emissions
3.6. Effect Analysis of Structural Equation Modelling (SEM)
4. Discussion
4.1. Energy Balances and Net Energy Ratio
4.2. GHG Emissions from Agricultural Systems
4.3. Balance between Livestock and Forage Crops
4.4. Uncertainty of Energy Balances and GHG Emissions Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ren, J.Z.; He, D.H.; Wang, N.; Zhu, X.Y.; Li, Z.Q. Models of coupling agro-grassland systems in desert-oasis region. Acta Prataculturae Sin. 1995, 2, 11–19. (In Chinese) [Google Scholar]
- Kramer, K.J.; Moll, H.C.; Nonhebel, S. Total greenhouse gas emissions related to the Dutch crop production system. Agric. Ecosyst. Environ. 1999, 72, 9–16. [Google Scholar] [CrossRef]
- Ozkan, B.; Akcaoz, H.; Fert, C. Energy input–output analysis in Turkish agriculture. Renew. Energy 2004, 29, 39–51. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Rafiee, S.; Omid, M.; Mousazadeh, H.; Rajaeifar, M.A. Application of artificial neural networks for prediction of output energy and GHG emissions in potato production in Iran. Agric. Syst. 2014, 123, 120–127. [Google Scholar] [CrossRef]
- Lal, R. Carbon emission from farm operations. Environ. Int. 2004, 30, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Pan, G.; Smith, P.; Luo, T.; Li, L.; Zheng, J.; Zhang, X.; Han, X.; Yan, M. Carbon footprint of China’s crop production—An estimation using agro-statistics data over 1993–2007. Agric. Ecosyst. Environ. 2011, 142, 231–237. [Google Scholar] [CrossRef]
- Broad, K.; Agrawala, S. The ethiopia food crisis-uses and limits of climate forecasts. Science 2000, 289, 1693–1694. [Google Scholar] [CrossRef]
- Marland, G.; West, T.; Schlamadinger, B.; Canella, L. Managing soil organic carbon in agriculture: The net effect on greenhouse gas emissions. Tellus B 2003, 613–621. [Google Scholar] [CrossRef]
- Yan, Z.G.; Li, W.; Yan, T.H.; Chang, S.H.; Hou, F.J. Evaluation of energy balances and greenhouse gas emissions from different agricultural production systems in Minqin Oasis, China. PeerJ 2019, 7, e6890. [Google Scholar] [CrossRef] [Green Version]
- International Organization for Standardization. ISO14044: Environmental Management—Life Cycle Assessment—Requirements and Guidelines; ISO: Geneva, Switzerland, 2006; pp. 1–16. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Mitigation of Climate Change. Available online: http://www.ipcc.ch/report/ar5/wg3/ (accessed on 21 July 2020).
- Wen, D.; Pimentel, D. Energy flow through an organic agroecosystem in China. Agric. Ecosyst. Environ. 1984, 11, 145–160. [Google Scholar] [CrossRef]
- Pimentel, D. Handbook of Energy Utilization in Agriculture; Bender, M., Ed.; CRC Press: Boca Raton, FL, USA, 1980; pp. 155–161. [Google Scholar]
- Huang, Z.W.; Yang, D.G.; Li, X.P.; Refu, K.T. Analysis on the energy flow of the farmer households and the characteristics of the eco-economic fractals in the middle and lower reaches of the Tarim river. Arid Zone Res. 2004, 21, 308–312. (In Chinese) [Google Scholar]
- Lu, F.B. Energy flow in the agroecosystem of farming-livestock-fruit. Ecol. Agric. Res. 1994, 2, 40–46. (In Chinese) [Google Scholar]
- Steve, M. How much carbon dioxide does the human breathe out every day in the world? China Sci. Tech. Panor. Mag. 2005, 6, 176–177. (In Chinese) [Google Scholar]
- Chen, S.T.; Huang, Y.; Zou, J.; Shen, Q.; Hu, Z.; Qin, Y.; Chen, H.; Pan, G. Modeling interannual variability of global soil respiration from climate and soil properties. Agric. For. Meteorol. 2010, 150, 590–605. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G.A. Synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Shi, L.G.; Chen, F.; Kong, F.L.; Fan, S.C. The carbon footprint of winter wheat-summer maize cropping pattern on north China plain. China Popul. Resour. Environ. 2011, 21, 93–98. (In Chinese) [Google Scholar]
- Blook, H.; Kool, A.; Luske, B.; Ponsioen, T.; Scholten, J. Methodology for Assessing Carbon Footprints of Horticultural Products. Available online: https://www.researchgate.net/publication/285690888 (accessed on 21 July 2020).
- Lu, F.; Wang, X.K.; Han, B. Assessment on the availability of nitrogen fertilization in improving carbon sequestration potential of China’s cropland soil. Chin. J. App. Ecol. 2008, 19, 2239–2250. (In Chinese) [Google Scholar]
- Dubey, A.; Lal, R. Carbon footprint and sustainability of agricultural production systems in Punjab, India, and Ohio, USA. J. Crop Improv. 2009, 23, 332–350. [Google Scholar] [CrossRef]
- Adom, F.; Maes, A.; Workman, C.; Clayton-Nierderman, Z.; Thoma, G.; Shonnard, D. Regional carbon footprint analysis of dairy feeds for milk production in the USA. Int. J. Life Cycle Assess. 2012, 17, 520–534. [Google Scholar] [CrossRef]
- Lal, R. Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad. Dev. 2010, 17, 197–209. [Google Scholar] [CrossRef]
- Wang, J.Q. Agricultural Standards—Feeding Standard of Meat Producting Sheep and Goats (NY/T 816-2004); Ministry of Agriculture of China, Ed.; China Agriculture Press: Beijing, China, 2004; pp. 17–20.
- Dyer, J.A.; Desjardins, R.L. Carbon dioxide emissions associated with the manufacturing of tractors and farm machinery in Canada. Biosyst. Eng. 2006, 93, 107–118. [Google Scholar] [CrossRef]
- Meng, X.H.; Cheng, G.Q.; Zhang, J.B.; Wang, Y.B.; Zhou, H.C. Analyze on the spatialtemporal characteristics of GHG estimation of livestock’s by life cycle assessment in China. China Environ. Sci. 2014, 34, 2167–2176. (In Chinese) [Google Scholar]
- Shi, L.G.; Fan, S.G.; Kong, F.L.; Chen, F. Preliminary study on the carbon efficiency of main crops production in north China plain. Acta Agron. Sin. 2011, 37, 1485–1490. (In Chinese) [Google Scholar] [CrossRef]
- Wu, C.C.; Gao, X.Y.; Hou, F.J. Carbon balance of household production system in the transition zone from the loess plateau to the Qinghai-Tibet Plateau, China. Chin. J. Appl. Ecol. 2017, 28, 3341–3350. (In Chinese) [Google Scholar]
- Pishgarkomleh, S.H.; Sefeedpari, P.; Ghahderijani, M. Exploring energy consumption and CO2 emission of cotton production in Iran. J. Renew. Sustain. Energy 2012, 4, 427–438. [Google Scholar]
- Yousefi, M.; Damghani, A.M.; Khoramivafa, M. Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran. Sci. Total Environ. 2014, 493, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Khoshroo, A. Energy use pattern and greenhouse gas emission of wheat production: A case study in Iran. Agric. Commun. 2014, 2, 9–14. Available online: https://www.researchgate.net/publication/262105641 (accessed on 21 July 2020).
- Abbas, A.; Yang, M.L.; Ahmad, R.; Yousaf, K.; Iqbal, T. Energy use efficiency in wheat production, a case study of Paunjab Pakistan. Fresenius Environ. Bull. 2017, 26, 6773–6779. Available online: https://www.prt-parlar.de/download_feb_2017/ (accessed on 21 July 2020).
- Baran, M.F.; Gokdogan, O. Comparison of energy use efficiency of different tillage methods on the secondary crop corn silage production. Fresenius Environ. Bull. 2016, 25, 3808–3814. Available online: https://www.prt-parlar.de/download_afs_2016/ (accessed on 21 July 2020).
- Sere, C.; Steinfeld, H.; Groenewold, J. Food and Agricultural Organization of the United Nations (FAOUN). Available online: http:/www.fao.org/WAIRDOCS/LEAD/X6101E/X6101E00.HTM (accessed on 21 July 2020).
- Soussana, J.F.; Tallec, T.; Blanfort, V. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 2010, 4, 334–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.H. The Research of Grassland Agricultural Development Model in Xinjiang. Ph.D. Thesis, Shihezi University, Xinjiang, China, 2015. (In Chinese). [Google Scholar]
- Zhang, P.P. Comparison of Pastoral Agriculture and Traditional Agricultural Production Pattern in Dingxi City. Master’s Thesis, Lanzhou University, Gansu, China, 2019. (In Chinese). [Google Scholar]
- Zeng, X.F.; Zhao, S.W.; Li, X.X.; Li, T.; Liu, J. Main crops carbon footprint in pingluo county of the Ningxia Hui autonomous region. Bull. Soil Water Conserv. 2012, 32, 61–65. (In Chinese) [Google Scholar]
Energy Factors of Agricultural Production Inputs | |||
---|---|---|---|
Seed (MJ/kg seed) | Wheat (spring) | 17.9 | [11] |
Maize | 104.65 | [12] | |
Cotton | 22.024 | [13] | |
Alfalfa | 108.82 | [11] | |
Grape | 15.16 | [13] | |
Tomato | 16.33 | [14] | |
Fertilizer (MJ/kg fertilizer) | N | 78.1 | [12] |
P | 17.4 | [12] | |
K | 13.7 | [12] | |
Farmyard manure (MJ/kg manure) | Animal manure | 14.63 | [12] |
Pesticide (MJ/kg pesticide) | Herbicides | 278 | [12] |
Insecticides | 233 | [12] | |
Fungicides | 121 | [12] | |
Mulch (MJ/kg mulch) | Plastic mulch | 51.9 | [6] |
Fuel (MJ/kg fuel) | Diesel | 47.78 | [6] |
Electricity (MJ/kwh electricity) | Electricity for irrigation | 12 | |
Transportation (MJ/kg truck) | Truck | 8.8 | [11] |
Maintenance of machinery (MJ/kg tractor) | Tractor | 5.21 | [15] |
Human labor (MJ/h) | Male | 0.68 | [12] |
Female | 0.52 | [12] | |
Forage feed (MJ/kg feed) | Wheat hay | 15.05 | [16] |
Maize hay | 15.22 | [16] | |
Alfalfa hay | 18.8 | [16] | |
Concentrate feed (MJ/kg feed) | Maize | 18.26 | [16] |
Soybean | 18.83 | [16] | |
Wheat husk | 13.72 | [16] | |
Energy Factors of Agricultural Products | |||
Grain (MJ/kg grain) | Wheat (spring) | 12.56 | [16] |
Maize | 18.26 | [16] | |
Cotton | 22.024 | [16] | |
Grape | 2.341 | [16] | |
Tomato | 1.258 | [13] | |
Hay (MJ/kg hay) | Wheat (spring) | 15.05 | [16] |
Maize | 15.22 | [16] | |
Alfalfa | 18.8 | [16] | |
Cotton | 17.37 | [16] | |
Livestock products (MJ/kg product) | Lamb | 12.877 | [13] |
Beef | 13.88 | [13] | |
Milk | 2.889 | [13] | |
Wool | 23.41 | [11] |
Item | Sub-Item | Factors | References |
---|---|---|---|
Emission Factors of GHG for Agricultural Production | |||
Seed 1 (kg CO2-eq/kg seed) | Wheat (spring) | 0.477 | [18] |
Maize | 3.85 | [19] | |
Cotton | 2.383 | [18] | |
Alfalfa | 9.643 | [18] | |
Grape | 2.35 | [2] | |
Tomato | 1.63 | [20] | |
Fertilizer (kg CO2-eq/kg fertilizer) | N | 6.38 | [21] |
P | 0.733 | [22] | |
K | 0.55 | [22] | |
Soil emissions CO2 after N application | 0.633 | [11] | |
Soil emissions N2O after N application | 6.205 | [23] | |
Pesticide (kg CO2-eq/kg pesticide) | Herbicides | 23.1 | [5] |
Insecticides | 18.7 | [5] | |
Fungicides | 13.933 | [24] | |
Mulch (kg CO2-eq/kg mulch) | Plastic mulch | 18.993 | [6] |
Electricity (tCO2-eq/kwh electricity) | Electricity for irrigation | 0.917 | [25] |
Fuel (kg CO2-eq/L fuel) | Diesel | 2.629 | [6] |
Tractor depreciation (kg CO2-eq/year) | Tractor 7810 | 14.07 | [26] |
Tractor 55/60 | 0.49 | [26] | |
Tractor 1002/1202 | 1.32 | [26] | |
Tractor 250 | 0.16 | [26] | |
Harvester 1200 | 0.66 | [26] | |
Harvester 154 | 1.34 | [26] | |
Feed processing (kg CO2-eq/kg feed) | Maize | 0.0102 | [27] |
Soybean | 0.1013 | [27] | |
Wheat | 0.0319 | [27] | |
CH4 emissions from enteric fermentation (kg CO2-eq/head/year) | Sheep | 125 | [11] |
Beef cattle | 1175 | [11] | |
Dairy cattle | 1525 | [11] | |
CH4 emissions from manure management (kg CO2-eq/head/year) | Sheep | 2.75 | [11] |
Beef cattle | 25 | [11] | |
Dairy cattle | 250 | [11] | |
N2O emissions from manure management kg CO2-eq/head/year) | Sheep | 62.3 | [11] |
Beef cattle | 120.4 | [11] | |
Dairy cattle | 106.7 | [11] |
SZC 1 | XYD 2 | MSW 3 | SED 4 | p-Value | |
---|---|---|---|---|---|
Crop products (Mg DM/ha) | |||||
Wheat (spring) | 15.65 a | 16.44 a | 10.67 b | 0.379 | <0.05 |
Maize | 60.00 a | 45.45 b | 48.89 b | 0.218 | <0.05 |
Cotton | 13.42 a | 15.68 b | 15.53 c | 0.157 | <0.05 |
Alfalfa | - | 14.81 | 13.62 | - | - |
Grape | - | 30.34 | 30.67 | - | - |
Tomato | 8175 | - | - | - | - |
Water use (1000 m3/ha) | |||||
Wheat (spring) | 6.77 a | 5.59 c | 6.39 b | 0.176 | <0.001 |
Maize | 9.06 a | 7.59 b | 7.623 b | 0.244 | <0.05 |
Cotton | 8.32 a | 8.23 a | 6.30 b | 0.33 | <0.05 |
Alfalfa | - | 4.17 | 5.06 | - | - |
Grape | - | 7.39 | 5.96 | - | - |
Tomato | 6.56 | - | - | - | - |
Farmland | 7.67 a | 7.53 a | 6.501 b | 0.202 | <0.05 |
SZC 3 | XYD 4 | MSW 5 | SED 6 | p-Value | |
---|---|---|---|---|---|
Energy input | |||||
Crop production (GJ/ha) | |||||
Wheat (spring) | 63.19 a | 60.01 a | 55.39 b | 3.239 | <0.05 |
Maize | 56.93 a | 42.17 c | 50.03 b | 1.913 | <0.001 |
Cotton | 76.91 a | 58.37 b | 41.12 c | 5.166 | <0.001 |
Alfalfa | - | 19.09 | 23.61 | - | - |
Grape | - | 35.58 | 37.54 | - | - |
Tomato | 49.55 | - | - | - | - |
Farmland | 69.33 a | 58.47 b | 42.58 c | 4.416 | <0.001 |
Livestock production (MJ/kg CW and milk) | |||||
Sheep | 14.96 a | 10.96 b | 11.97 b | 1.225 | <0.05 |
Beef cattle | 38.84 a | 30.32 b | 30.01 b | 5.230 | <0.05 |
Dairy cattle | 1.44 a | 1.30 b | 1.32 b | 0.040 | <0.05 |
Energy output (GJ/ha) | |||||
Crop production (GJ/ha) | |||||
Wheat (spring) | 255.82 b | 268.81 a | 174.36 c | 14.779 | <0.001 |
Maize | 313.63 | 360.01 | 350.24 | 7.048 | 0.317 |
Cotton | 99.72 b | 116.49 a | 115.41 a | 2.709 | <0.05 |
Alfalfa | - | 278.48 | 255.97 | - | |
Grape | - | 101.28 | 101.9 | - | - |
Tomato | 204.15 | - | - | - | - |
Farmland | 230.69 c | 308.69 a | 247.64 b | 16.517 | <0.001 |
Livestock production (MJ/kg CW and milk) | |||||
Sheep | 29.23 | 29.26 | 29.29 | 0.010 | 0.35 |
Beef cattle | 87.04 | 87.01 | 87.02 | 0.002 | 0.561 |
Dairy cattle | 2.56 | 2.54 | 2.54 | 0.001 | 0.570 |
Energy balances (GJ/ha) | |||||
Crop production (GJ/ha) | |||||
Wheat (spring) | 195.63 b | 205.8 a | 118.97 c | 13.699 | <0.001 |
Maize | 257.07 b | 309.46 a | 269.97 b | 8.519 | <0.05 |
Cotton | 22.82 c | 58.12 b | 74.29 a | 7.598 | <0.001 |
Alfalfa | - | 255.39 | 236.36 | - | - |
Grape | - | 265.7 | 264.36 | - | - |
Tomato | 154.6 | - | - | - | - |
Farmland | 161.12 c | 221.47 a | 207.95 b | 11.452 | <0.001 |
Livestock production (MJ/kg CW and Milk) | |||||
Sheep | 17.11 b | 18.31 a | 17.18 b | 1.035 | <0.05 |
Beef cattle | 48.13 | 49.01 | 48.22 | 0.924 | 0.125 |
Dairy cattle | 1.10 | 1.12 | 1.08 | 0.051 | 0.214 |
Net energy ratio 1 | |||||
Crop production | |||||
Wheat | 4.05 a | 4.27 a | 3.15 b | 0.185 | <0.05 |
Maize | 6.09 c | 6.45 a | 6.20 b | 0.225 | <0.001 |
Cotton | 1.30 c | 2.03 b | 2.81 a | 0.219 | <0.001 |
Alfalfa | - | 12.06 | 13.05 | - | - |
Grape | - | 8.47 | 8.04 | - | - |
Tomato | 4.12 | - | - | - | - |
Farmland | 3.32 c | 5.39 a | 4.63 b | 0.625 | <0.001 |
Livestock production | |||||
Sheep | 1.95 b | 2.21 a | 1.97 b | 0.167 | <0.05 |
Beef cattle | 2.29 b | 2.43 a | 2.31 b | 0.256 | <0.05 |
Dairy cattle | 1.78 | 1.80 | 1.77 | 0.004 | 0.524 |
Water use efficiency 2 | |||||
Crop production (MJ/m3) | |||||
Wheat (spring) | 28.92 a,b | 36.84 a | 18.61 b | 3.196 | <0.05 |
Maize | 7.57 c | 14.42 a | 11.80 b | 1.102 | <0.001 |
Cotton | 2.73 c | 6.99 b | 11.79 a | 1.321 | <0.001 |
Alfalfa | - | 27.85 | 23.50 | - | - |
Grape | - | 25.57 | 24.38 | - | - |
Tomato | 23.59 | - | - | - | - |
Farmland | 9.90 b | 13.99 a | 14.15 a | 0.812 | <0.05 |
SZC 2 | XYD 3 | MSW 4 | SED 5 | p-Value | |
---|---|---|---|---|---|
GHG emissions | |||||
Crop production (Mg CO2-eq/ha. year) | |||||
Wheat (spring) | 8.58 b | 8.60 b | 8.99 a | 0.065 | <0.05 |
Maize | 12.45 a | 12.12 b | 12.09 b | 0.057 | <0.05 |
Cotton | 17.72 | 17.75 | 17.69 | 0.137 | 0.981 |
Alfalfa | - | 8.09 | 8.10 | - | - |
Grape | - | 12.26 | 12.19 | - | - |
Tomato | 17.02 | - | - | - | - |
Farmland | 13.22 | 12.94 | 12.27 | 0.377 | 0.534 |
Livestock production (kg CO2-eq/kg CW and milk) | |||||
Sheep | 9.23 a | 8.35 a,b | 7.62 b | 0.305 | 0.072 |
Beef cattle | 22.95 b | 24.19 a | 22.87 b | 0.237 | <0.05 |
Dairy cattle | 0.67 | 0.70 | 0.71 | 0.013 | 0.639 |
Carbon stocks | |||||
Crop production (Mg CO2-eq/ha year) | |||||
Wheat (spring) | 10.44 b | 10.40 b | 10.86 a | 0.075 | 0.069 |
Maize | 23.52 a | 22.84 b | 22.83 b | 0.107 | <0.05 |
Cotton | 13.13 | 13.10 | 13.11 | 0.101 | 0.995 |
Alfalfa | - | 23.83 | 23.74 | - | - |
Grape | - | 10.98 | 11.00 | - | - |
Tomato | 10.35 | - | - | - | - |
Farmland | 12.10 b | 15.94 a | 17.33 a | 0.582 | <0.001 |
Livestock production (kg CO2-eq/kg CW and milk) | |||||
Sheep | 1.06 a | 1.76 a,b | 1.93 b | 0.061 | 0.610 |
Beef cattle | 3.57 | 3.22 | 3.54 | 0.097 | 0.287 |
Dairy cattle | 0.10 | 0.11 | 0.11 | 0.003 | 0.593 |
Carbon balances | |||||
Crop production (Mg CO2-eq/ha year) | |||||
Wheat (spring) | 1.85 | 1.80 | 1.87 | 0.012 | 0.160 |
Maize | 11.06 a | 10.72 b | 10.75 b | 0.050 | <0.05 |
Cotton | −4.59 | −4.64 | −4.56 | 0.037 | 0.601 |
Alfalfa | - | 15.74 | 15.63 | - | - |
Grape | - | −1.28 | −1.18 | - | - |
Tomato | −6.68 | - | - | - | - |
Farmland | −1.12 b | 2.99 a | 5.06 a | 0.798 | <0.05 |
Livestock production (kg CO2-eq/kg CW and milk) | |||||
Sheep | −7.63 b | −6.60 a,b | −5.69 a | 0.330 | <0.05 |
Beef cattle | −19.39 a | −20.97 b | −19.32 a | 0.298 | <0.05 |
Dairy cattle | −0.53 | −0.59 | −0.57 | 0.011 | 0.653 |
Carbon economic efficiency (¥/kg CO2-eq) | |||||
Crop production | |||||
Wheat | 0.17 | 0.18 | 0.17 | 0.001 | 0.185 |
Maize | 1.16 | 1.17 | 1.14 | 0.016 | 0.802 |
Cotton | 0.70 | 0.72 | 0.70 | 0.015 | 0.872 |
Alfalfa | - | 1.18 | 1.17 | - | - |
Grape | - | 0.41 | 0.42 | - | - |
Tomato | 0.32 | - | - | - | - |
Farmland | 0.34 b | 0.75 a | 0.82 a | 0.042 | <0.001 |
Livestock production | |||||
Sheep | 0.24 a | 0.22 a,b | 0.20 b | 0.008 | 0.063 |
Beef cattle | 0.38 b | 0.40 a | 0.38 b | 0.004 | <0.05 |
Dairy cattle | 0.17 | 0.18 | 0.18 | 0.609 | 0.524 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Hou, F.; Hou, F. Energy Balances and Greenhouse Gas Emissions of Agriculture in the Shihezi Oasis of China. Atmosphere 2020, 11, 781. https://doi.org/10.3390/atmos11080781
Yan Z, Hou F, Hou F. Energy Balances and Greenhouse Gas Emissions of Agriculture in the Shihezi Oasis of China. Atmosphere. 2020; 11(8):781. https://doi.org/10.3390/atmos11080781
Chicago/Turabian StyleYan, Zhengang, Fuqin Hou, and Fujiang Hou. 2020. "Energy Balances and Greenhouse Gas Emissions of Agriculture in the Shihezi Oasis of China" Atmosphere 11, no. 8: 781. https://doi.org/10.3390/atmos11080781
APA StyleYan, Z., Hou, F., & Hou, F. (2020). Energy Balances and Greenhouse Gas Emissions of Agriculture in the Shihezi Oasis of China. Atmosphere, 11(8), 781. https://doi.org/10.3390/atmos11080781