Preface: Ozone Evolution in the Past and Future
1. Introduction
2. Summary of This Special Issue
2.1. Stratospheric Ozone Evolution
2.2. Tropospheric Ozone Evolution
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Bais, A.F.; Lucas, R.M.; Bornman, J.F.; Williamson, C.E.; Sulzberger, B.; Austin, A.T.; Wilson, S.R.; Andrady, A.L.; Bernhard, G.; Aucamp, P.J.; et al. Environmental effects of ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2019. Photochem. Photobiol. Sci. 2020, 19, 542–584. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project—Report No. 58; WMO: Geneva, Switzerland, 2018; 588p. [Google Scholar]
- Fowler, D.; Amann, M.; Anderson, R.; Ashmore, M.; Cox, P.; Depledge, M.; Derwent, D.; Grennfelt, P.; Hewitt, N.; Jenkin, M.; et al. Ground-Level Ozone in the 21st Century: Future Trends, Impacts, and Policy Implications; Royal Society Policy Document 15/08; The Royal Society: London, UK, 2008. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p. [Google Scholar]
- Ball, W.T.; Alsing, J.; Mortlock, D.J.; Staehelin, J.; Haigh, J.D.; Thomas, P.; Tummon, F.; Stübi, R.; Stenke, A.; Bourassa, A.; et al. Continuous decline in lower stratospheric ozone offsets ozone layer recovery. Atmos. Chem. Phys. 2018, 18, 1379–1394. [Google Scholar] [CrossRef] [Green Version]
- Witze, A. Rare ozone hole opens over Arctic—And it’s big. Nature 2020, 580, 18–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smyshlyaev, S.; Galin, V.; Blakitnaya, P.; Jakovlev, A. Numerical modeling of the natural and manmade factors influencing past and current changes in polar, mid-latitude and tropical ozone. Atmosphere 2020, 11, 76. [Google Scholar] [CrossRef] [Green Version]
- Egorova, T.; Rozanov, E.; Arsenovic, P.; Sukhodolov, T. Ozone layer evolution in the early 20th century. Atmosphere 2020, 11, 169. [Google Scholar] [CrossRef] [Green Version]
- Chubarova, N.; Pastukhova, A.; Zhdanova, E.; Volpert, E.; Smyshlyaev, S.; Galin, V. Effects of ozone and clouds on temporal variability of surface UV radiation and UV resources over northern eurasia derived from measurements and modeling. Atmosphere 2020, 11, 59. [Google Scholar] [CrossRef] [Green Version]
- Eleftheratos, K.; Kapsomenakis, J.; Zerefos, C.S.; Bais, A.F.; Fountoulakis, I.; Dameris, M.; Jöckel, P.; Haslerud, A.S.; Godin-Beekmann, S.; Petropavlovskikh, I.; et al. Possible effects of greenhouse gases to ozone profiles and DNA active UV-B irradiance at ground level. Atmosphere 2020, 11, 228. [Google Scholar] [CrossRef] [Green Version]
- Krizan, P.; Kozubek, M.; Lastovicka, J. Discontinuities in the ozone concentration time series from MERRA 2 reanalysis. Atmosphere 2019, 10, 812. [Google Scholar] [CrossRef] [Green Version]
- Mbatha, N.; Bencherif, H. Time series analysis and forecasting using a novel hybrid LSTM data-driven model based on empirical wavelet transform applied to total column of ozone at buenos aires, argentina (1966–2017). Atmosphere 2020, 11, 457. [Google Scholar] [CrossRef]
- Mkololo, T.; Mbatha, N.; Sivakumar, V.; Bègue, N.; Coetzee, G.; Labuschagne, C. Stratosphere–Troposphere exchange and O3 variability in the lower stratosphere and upper troposphere over the irene SHADOZ site, South Africa. Atmosphere 2020, 11, 586. [Google Scholar] [CrossRef]
- Diaz, F.; Khan, M.; Shallcross, B.; Shallcross, E.; Vogt, U.; Shallcross, D. Ozone trends in the United Kingdom over the last 30 years. Atmosphere 2020, 11, 534. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Wang, W. A stratospheric intrusion-influenced ozone pollution episode associated with an intense horizontal-trough event. Atmosphere 2020, 11, 164. [Google Scholar] [CrossRef] [Green Version]
- Park, S. Assessing the impact of ozone and particulate matter on mortality rate from respiratory disease in Seoul, Korea. Atmosphere 2019, 10, 685. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rozanov, E. Preface: Ozone Evolution in the Past and Future. Atmosphere 2020, 11, 709. https://doi.org/10.3390/atmos11070709
Rozanov E. Preface: Ozone Evolution in the Past and Future. Atmosphere. 2020; 11(7):709. https://doi.org/10.3390/atmos11070709
Chicago/Turabian StyleRozanov, Eugene. 2020. "Preface: Ozone Evolution in the Past and Future" Atmosphere 11, no. 7: 709. https://doi.org/10.3390/atmos11070709
APA StyleRozanov, E. (2020). Preface: Ozone Evolution in the Past and Future. Atmosphere, 11(7), 709. https://doi.org/10.3390/atmos11070709