Climatology of Tropospheric Relative Humidity over the Korean Peninsula from Radiosonde and ECMWF Reanalysis
Abstract
1. Introduction
2. Data
3. Method
4. Results
5. Summary and Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Kwon, Y.C.; Kim, T.-H.; Kim, J.-E.E.; Choi, S.-J.; Kwon, I.-H.; Kim, J.; Lee, E.-H.; Park, R.-S.; Kim, D.-I. The Korean Integrated Model (KIM) system for global weather forecasting. Asia-Pac. J. Atmos. Sci. 2018, 54, 267–292. [Google Scholar] [CrossRef]
- Walters, D.; Baran, A.J.; Boutle, I.; Brooks, M.; Earnshaw, P.; Edwards, J.; Furtado, K.; Hill, P.; Lock, A.; Manners, J.; et al. The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geosci. Model Dev. 2019, 12, 1909–1963. [Google Scholar] [CrossRef]
- Dai, A.; Wang, J.; Thorne, P.W.; Parker, D.E.; Haimberger, L.; Wang, X.L. A new approach to homogenize radiosonde humidity data. J. Clim. 2011, 24, 965–991. [Google Scholar] [CrossRef]
- Maturilli, M.; Kayser, M. Arctic warming, moisture increase and circulation changes observed in the Ny-Ålesund homogenized radiosonde record. Theor. Appl. Climatol. 2017, 130, 1–17. [Google Scholar] [CrossRef]
- Liljegren, J.; Boukabara, S.-A.; Cady-Pereira, K.; Clough, S.A. The effect of the half-width of the 22-GHz water vapor line on retrievals of temperature and water vapor profiles with a twelve-channel microwave radiometer. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1102–1108. [Google Scholar] [CrossRef]
- Tobin, D.C.; Revercomb, H.E.; Knuteson, R.O.; Lesht, B.M.; Strow, L.L.; Hannon, S.E.; Feltz, W.F.; Moy, L.A.; Fetzer, E.J.; Cress, T.S. Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation. J. Geophys. Res. 2006, 111, D09S14. [Google Scholar] [CrossRef]
- Miloshevich, L.M.; Vo¨mel, H.; Whiteman, D.N.; Lesht, B.M.; Schmidlin, F.J.; Russo, F. Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation. J. Geophys. Res. 2006, 111, D09S10. [Google Scholar] [CrossRef]
- Sun, B.; Reale, A.; Tilley, F.H.; Pettey, M.E.; Nalli, N.R.; Barnet, C.D. Assessment of NUCAPS S-NPP CrIS/ATMS sounding products using reference and conventional radiosonde observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2499–2509. [Google Scholar] [CrossRef]
- Chevallier, F.; Chéruy, F.; Scott, N.A.; Chédin, A. A neural network approach for a fast and accurate computation of longwave radiative budget. J. Appl. Meteorol. 1998, 37, 1385–1397. [Google Scholar] [CrossRef]
- Song, H.-J.; Sohn, B.-J.; Hong, S.-Y.; Hashino, T. Idealized numerical experiments on the microphysical evolution of warm-type heavy rainfall. J. Geophys. Res. Atmos. 2017, 122, 1685–1699. [Google Scholar] [CrossRef]
- Vance, A.K.; Taylor, J.P.; Hewison, T.J.; Elms, J. Comparison of in situ humidity data from aircraft, dropsonde, and radiosonde. J. Atmos. Ocean. Technol. 2004, 21, 921–932. [Google Scholar] [CrossRef]
- Soddell, J.R.; McGuffie, K.; Holland, G.J. Intercomparison of atmospheric soundings from the aerosonde and radiosonde. J. Appl. Meteorol. 2004, 43, 1260–1269. [Google Scholar] [CrossRef]
- Stokes, G.M.; Schwartz, S.E. The Atmospheric Radiation Measurement (ARM) program: Programmatic background and design of the cloud and radiation test bed. Bull. Am. Meteorol. Soc. 1994, 75, 1201–1221. [Google Scholar] [CrossRef]
- Bodeker, G.E.; Bojinski, S.; Cimini, D.; Dirksen, R.J.; Haeffelin, M.; Hannigan, J.W.; Hurst, D.F.; Leblanc, T.; Madonna, F.; Maturilli, M.; et al. Reference upper-air observations for climate: From concept to reality. Bull. Am. Meteorol. Soc. 2016, 97, 123–135. [Google Scholar] [CrossRef]
- Webster, P.J.; Lukas, R. The Coupled Ocean–Atmosphere Response Experiment. Bull. Am. Meteorol. Soc. 1992, 73, 1377–1416. [Google Scholar] [CrossRef]
- Halverson, J.B.; Rickenbach, R.; Roy, B.; Pierce, H.; Williams, E. Environmental characteristics of convective systems during TRMM LBA. Mon. Weather Rev. 2002, 130, 1493–1509. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, R.; Wan, Q.; Wang, B.; Wong, W.K.; Hu, Z.; Jou, B.J.-D.; Lin, Y.; Johnson, R.H.; Chang, C.-P.; et al. The Southern China Monsoon Rainfall Experiment (SCMREX). Bull. Am. Meteorol. Soc. 2017, 98, 999–1013. [Google Scholar] [CrossRef]
- Gettelman, A.; Walden, V.P.; Miloshevich, L.M.; Roth, W.L.; Halter, B. Relative humidity over Antarctica from radiosondes, satellites, and a general circulation model. J. Geophys. Res. 2006, 111, D09S13. [Google Scholar] [CrossRef]
- Treffeisen, R.; Krejci, R.; Ström, J.; Engvall, A.C.; Herber, A.; Thomason, L. Humidity observations in the Arctic troposphere over Ny-Ålesund, Svalbard based on 15 years of radiosonde data. Atmos. Chem. Phys. 2007, 7, 2721–2732. [Google Scholar] [CrossRef]
- Dzambo, A.M.; Turner, D.D. Characterizing relative humidity with respect to ice in midlatitude cirrus clouds as a function of atmospheric state. J. Geophys. Res. Atmos. 2016, 121, 12253–12269. [Google Scholar] [CrossRef]
- Noh, Y.-C.; Sohn, B.-J.; Kim, Y.; Joo, S.; Bell, W. Evaluation of temperature and humidity profiles of Unified Model and ECMWF analysis using GRAUAN radiosonde observations. Atmosphere 2016, 7, 94. [Google Scholar] [CrossRef]
- Lang, R.; Lawrence, M.G. Improvement of the vertical humidity distribution in the chemistry transport model MATCH through increased evaporation of convective precipitation. Geophys. Res. Lett. 2005, 32, L17812. [Google Scholar] [CrossRef]
- Milton, S.F.; Earnshaw, P. Evaluation of surface water and energy cycles in the Met Office global NWP model using CEOP data. J. Meteorol. Soc. Jpn. 2007, 85A, 43–72. [Google Scholar] [CrossRef]
- Agustí-Panareda, A.; Vasiljevic, D.; Beljaars, A.; Bock, O.; Guichard, F.; Nuret, M.; Garcia Mendez, A.; Andersson, E.; Bechtold, P.; Fink, A.; et al. Radiosonde humidity bias correction over the West African region for the special AMMA reanalysis at ECMWF. Q. J. R. Meteorol. Soc. 2009, 135, 595–617. [Google Scholar] [CrossRef]
- Faccani, C.; Rabier, F.; Fourrié, N.; Agusti-Panareda, A.; Karbou, F.; Moll, P.; Lafore, J.-P.; Nuret, M.; Hdidou, F.; Bock, O. The impact of the AMMA radiosonde data on the French global assimilation and forecast system. Weather Forecast. 2009, 24, 1268–1286. [Google Scholar] [CrossRef]
- Kennedy, A.D.; Dong, X.; Xi, B.; Xie, S.; Zhang, Y.; Chen, J. A comparison of MERRA and NARR reanalyses with the DOE ARM SGP data. J. Clim. 2011, 24, 4541–4557. [Google Scholar] [CrossRef]
- Feng, Y.; Cadeddu, M.; Kotamarthi, V.R.; Renju, R.; Raju, C.S. Humidity bias and effect on simulated aerosol optical properties during the Ganges Valley Experiment. Curr. Sci. 2016, 111, 93–100. [Google Scholar] [CrossRef]
- Yang, Y.; Moore, S.; Uddstrom, M.; Turner, R.; Carey-Smith, T. Model moist bias in the middle and upper troposphere during DEEPWAVE. Atmos. Sci. Lett. 2017, 18, 161–167. [Google Scholar] [CrossRef]
- Wang, H.; Burleyson, C.D.; Ma, P.-L.; Fast, J.D.; Rasch, P.J. Using the Atmospheric Radiation Measurement (ARM) datasets to evaluate climate models in simulating diurnal and seasonal variations of tropical clouds. J. Clim. 2018, 31, 3301–3325. [Google Scholar] [CrossRef]
- Pante, G.; Knippertz, P. Resolving Sahelian thunderstorms improves mid-latitude weather forecasts. Nat. Commun. 2019, 10, 3487. [Google Scholar] [CrossRef] [PubMed]
- Miloshevich, L.M.; Paukkunen, A.; Vömel, H.; Oltmans, S.J. Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements. J. Atmos. Ocean. Technol. 2004, 21, 1305–1327. [Google Scholar] [CrossRef]
- Miloshevich, L.M.; Vo¨mel, H.; Whiteman, D.N.; Leblanc, T. Accuracy assessment and correction of Vaisala RS92 radiosonde water vapor measurements. J. Geophys. Res. 2009, 114, D11305. [Google Scholar] [CrossRef]
- Vömel, H.; Selkirk, H.; Miloshevich, L.; Valverde-Canossa, J.; Valdés, J.; Kyrö, E.; Kivi, R.; Stolz, W.; Peng, G.; Diaz, J.A. Radiation dry bias of the Vaisala RS92 humidity sensor. J. Atmos. Ocean. Technol. 2007, 24, 953–963. [Google Scholar] [CrossRef]
- Fujiwara, M.; Vömel, H.; Hasebe, F.; Shiotani, M.; Ogino, S.-Y.; Iwasaki, S.; Nishi, N.; Shibata, T.; Shimizu, K.; Nishimoto, E.; et al. Seasonal to decadal variations of water vapor in the tropical lower stratosphere observed with balloon-borne cryogenic frost point hygrometers. J. Geophys. Res. 2010, 115, D18304. [Google Scholar] [CrossRef]
- Franklin, C.N.; Protat, A.; Leroy, D.; Fontaine, E. Controls on phase composition and ice water content in a convection-permitting model simulation of a tropical mesoscale convective system. Atmos. Chem. Phys. 2016, 16, 8767–8789. [Google Scholar] [CrossRef]
- Song, H.-J.; Sohn, B.-J. An evaluation of WRF microphysics schemes for simulating the warm-type heavy rain over the Korean peninsula. Asia-Pac. J. Atmos. Sci. 2018, 54, 1–12. [Google Scholar] [CrossRef]
- Song, H.-J.; Lim, B.; Joo, S. Evaluation of rainfall forecast with heavy rain types in the high-resolution Unified Model over South Korea. Weather Forecast. 2019, 34, 1277–1293. [Google Scholar] [CrossRef]
- Masunaga, H. Short-term versus climatological relationship between precipitation and tropospheric humidity. J. Clim. 2012, 25, 7983–7990. [Google Scholar] [CrossRef]
- Song, H.-J.; Sohn, B.-J. Two heavy rainfall types over the Korean peninsula in the humid East Asian summer environment: A satellite observation study. Mon. Weather Rev. 2015, 143, 363–382. [Google Scholar] [CrossRef]
- Deng, M.; Mace, G.G.; Wang, Z. Anvil productivities of tropical deep convective clusters and their regional differences. J. Atmos. Sci. 2016, 73, 3467–3487. [Google Scholar] [CrossRef]
- Cesana, G.; Chepfer, H.; Winker, D.; Getzewich, B.; Cai, X.; Jourdan, O.; Mioche, G.; Okamoto, H.; Hagihara, Y.; Noel, V.; et al. Using in situ airborne measurements to evaluate three cloud phase products derived from CALIPSO. J. Geophys. Res. Atmos. 2016, 121, 5788–5808. [Google Scholar] [CrossRef]
- Jensen, M.P.; Holdridge, D.J.; Survo, P.; Lehtinen, R.; Baxter, S.; Toto, T.; Johnson, K.L. Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains site. Atmos. Meas. Tech. 2016, 9, 3115–3129. [Google Scholar] [CrossRef]
- Park, C.G.; Roh, K.M.; Cho, J.H. Radiosonde sensors bias in precipitable water vapor from comparisons with Global Positioning System measurements. J. Astron. Space Sci. 2012, 29, 295–303. [Google Scholar] [CrossRef][Green Version]
- Kwon, H.T.; Iwabuchi, T.; Lim, G.H. Comparison of precipitable water derived from ground-based GPS measurements with radiosonde observations over the Korean peninsula. J. Meteorol. Soc. Jpn. 2007, 85, 733–746. [Google Scholar] [CrossRef]
- Park, H.-E.; Yoo, S.-M.; Yoon, H.S.; Chung, J.-K.; Cho, J. Performance analysis of mapping functions and mean temperature equations for GNSS precipitable water vapor in the Korean peninsula. J. Posit. Navig. Tim. 2016, 5, 75–85. [Google Scholar] [CrossRef][Green Version]
- Seidel, D.J.; Sun, B.; Pettey, M.; Reale, A. Global radiosonde balloon drift statistics. J. Geophys. Res. 2011, 116, D07102. [Google Scholar] [CrossRef]
- Hersbach, H.; Dee, D. ERA5 reanalysis is in production. In ECMWF Newsletter; ECMWF: Reading, UK, 2016; Volume 147. [Google Scholar]
- Simmons, A.J.; Untch, A.; Jakob, C.; Kållberg, P.; Und’en, P. Stratospheric water vapour and tropical tropopause temperatures in ECMWF analyses and multi-year simulations. Q. J. R. Meteorol. Soc. 1999, 125, 353–386. [Google Scholar] [CrossRef]
- Tompkins, A.M.; Gierens, K.; Rädel, G. Ice supersaturation in the ECMWF integrated forecast system. Q. J. R. Meteorol. Soc. 2007, 133, 53–63. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Dai, A.; Immler, F.; Sommer, M.; Vömel, H. Radiation dry bias correction of Vaisala RS92 humidity data and its impacts on historical radiosonde data. J. Atmos. Ocean. Technol. 2013, 30, 197–214. [Google Scholar] [CrossRef]
- Dzambo, A.M.; Turner, D.D.; Mlawer, E.J. Evaluation of two Vaisala RS92 radiosonde solar radiative dry bias correction algorithms. Atmos. Meas. Tech. 2016, 9, 1613–1626. [Google Scholar] [CrossRef]
- Turner, D.D.; Lesht, B.M.; Clough, S.A.; Liljegren, J.C.; Revercomb, H.E.; Tobin, D.C. Dry bias and variability in Vaisala RS80-H radiosondes: The ARM experience. J. Atmos. Ocean. Technol. 2003, 20, 117–132. [Google Scholar] [CrossRef]
- Choi, B.I.; Lee, S.W.; Woo, S.B.; Kim, J.C.; Kim, Y.-G.; Yang, S.G. Evaluation of radiosonde humidity sensors at low temperature using ultralow-temperature humidity chamber. Adv. Sci. Res. 2018, 15, 207–212. [Google Scholar] [CrossRef]
- Lee, S.-W.; Choi, B.I.; Woo, S.-B.; Kim, J.C.; Kim, Y.-G. Calibration of a radiosonde humidity sensor at low temperature and low pressure. Metrologia 2019, 56, 5. [Google Scholar] [CrossRef]
- Smith, R.N.B. A scheme for predicting layer clouds and their water content in a general circulation model. Q. J. R. Meteorol. Soc. 1990, 116, 435–460. [Google Scholar] [CrossRef]
Index | Code | Station Name | Location Information | Number of Soundings |
---|---|---|---|---|
1 | RKSO | Osan | 37.10° N, 127.03° E, 52 m | 50,303 |
2 | RKJJ | Gwangju | 35.12° N, 126.82° E, 13 m | 40,584 |
3 | 47807 | Fukuoka | 33.58° N, 130.38° E, 15 m | 33,769 |
4 | 47138 | Pohang | 36.03° N, 129.38° E, 6 m | 28,629 |
5 | 47185 | Gosan | 33.29° N, 126.16° E, 73 m | 20,714 |
6 | 47102 | Baengnyeongdo | 37.97° N, 124.63° E, 158 m | 13,631 |
7 | 47090 | Sokcho | 38.25° N, 128.56° E, 18 m | 10,743 |
8 | 47169 | Heuksando | 34.69° N, 125.45° E, 69 m | 3843 |
9 | RKSB | Paju | 37.87° N, 126.80° E, 10 m | 2381 |
10 | JCCX | Sea | 35.00° N, 124.00° E, 0 m | 133 |
11 | UWEC | Sea | 38.90° N, 131.00° E, 0 m | 79 |
12 | UUPB | Sea | 33.80° N, 128.90° E, 0 m | 57 |
13 | JBOA | Sea | 33.00° N, 128.20° E, 0 m | 56 |
14 | JIVB | Sea | 35.60° N, 130.60° E, 0 m | 36 |
15 | RKTU | Gimpo | 36.70° N, 127.50° E, 58 m | 26 |
16 | 47132 | Daejeon | 36.33° N, 127.38° E, 64 m | 21 |
17 | EREI | Sea | 33.80° N, 129.00° E, 0 m | 21 |
18 | RKNN | Gangneung | 37.75° N, 128.94° E, 6 m | 17 |
19 | 47131 | Cheongju | 36.63° N, 127.43° E, 59 m | 17 |
20 | EREB | Sea | 35.30° N, 130.00° E, 0 m | 15 |
21 | RKNH | Hoengsong | 37.43° N, 127.94° E, 101 m | 13 |
22 | RKSS | Gimpo | 37.54° N, 126.80° E, 18 m | 11 |
23 | 47141 | Gunsan | 35.92° N, 126.62° E, 10 m | 8 |
24 | 47139 | Pohang2 | 35.98° N, 129.42° E, 20 m | 5 |
25 | 47101 | Chuncheon | 37.90° N, 127.74° E, 78 m | 4 |
26 | RKJY | Yeosu | 34.84° N, 127.62° E, 21 m | 4 |
27 | RKSM | Seongnam | 37.43° N, 127.11° E, 20 m | 3 |
28 | RKTN | Daegu | 35.88° N, 128.64° E, 37 m | 2 |
29 | RKPK | Kimhae | 35.18° N, 128.92° E, 6 m | 2 |
30 | 47104 | Bukgangneung | 37.88° N, 127.72° E, 76 m | 1 |
31 | UAAQ | Sea | 35.60° N, 130.30° E, 0 m | 1 |
32 | 47154 | Busan | 35.17° N, 129.13° E, 2 m | 1 |
33 | RKPS | Sacheon | 35.08° N, 128.08° E, 8 m | 1 |
34 | RBOA | Sea | 33.40° N, 128.40° E, 0 m | 1 |
35 | 47187 | Moseulpo | 33.20° N, 126.27° E, 13 m | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.-J.; Kim, S.; Lee, H.; Kim, K.-H. Climatology of Tropospheric Relative Humidity over the Korean Peninsula from Radiosonde and ECMWF Reanalysis. Atmosphere 2020, 11, 704. https://doi.org/10.3390/atmos11070704
Song H-J, Kim S, Lee H, Kim K-H. Climatology of Tropospheric Relative Humidity over the Korean Peninsula from Radiosonde and ECMWF Reanalysis. Atmosphere. 2020; 11(7):704. https://doi.org/10.3390/atmos11070704
Chicago/Turabian StyleSong, Hwan-Jin, Sunyoung Kim, Hyesook Lee, and Ki-Hoon Kim. 2020. "Climatology of Tropospheric Relative Humidity over the Korean Peninsula from Radiosonde and ECMWF Reanalysis" Atmosphere 11, no. 7: 704. https://doi.org/10.3390/atmos11070704
APA StyleSong, H.-J., Kim, S., Lee, H., & Kim, K.-H. (2020). Climatology of Tropospheric Relative Humidity over the Korean Peninsula from Radiosonde and ECMWF Reanalysis. Atmosphere, 11(7), 704. https://doi.org/10.3390/atmos11070704