Climatology of Tropospheric Relative Humidity over the Korean Peninsula from Radiosonde and ECMWF Reanalysis
Abstract
:1. Introduction
2. Data
3. Method
4. Results
5. Summary and Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Kwon, Y.C.; Kim, T.-H.; Kim, J.-E.E.; Choi, S.-J.; Kwon, I.-H.; Kim, J.; Lee, E.-H.; Park, R.-S.; Kim, D.-I. The Korean Integrated Model (KIM) system for global weather forecasting. Asia-Pac. J. Atmos. Sci. 2018, 54, 267–292. [Google Scholar] [CrossRef]
- Walters, D.; Baran, A.J.; Boutle, I.; Brooks, M.; Earnshaw, P.; Edwards, J.; Furtado, K.; Hill, P.; Lock, A.; Manners, J.; et al. The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geosci. Model Dev. 2019, 12, 1909–1963. [Google Scholar] [CrossRef] [Green Version]
- Dai, A.; Wang, J.; Thorne, P.W.; Parker, D.E.; Haimberger, L.; Wang, X.L. A new approach to homogenize radiosonde humidity data. J. Clim. 2011, 24, 965–991. [Google Scholar] [CrossRef]
- Maturilli, M.; Kayser, M. Arctic warming, moisture increase and circulation changes observed in the Ny-Ålesund homogenized radiosonde record. Theor. Appl. Climatol. 2017, 130, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Liljegren, J.; Boukabara, S.-A.; Cady-Pereira, K.; Clough, S.A. The effect of the half-width of the 22-GHz water vapor line on retrievals of temperature and water vapor profiles with a twelve-channel microwave radiometer. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1102–1108. [Google Scholar] [CrossRef]
- Tobin, D.C.; Revercomb, H.E.; Knuteson, R.O.; Lesht, B.M.; Strow, L.L.; Hannon, S.E.; Feltz, W.F.; Moy, L.A.; Fetzer, E.J.; Cress, T.S. Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation. J. Geophys. Res. 2006, 111, D09S14. [Google Scholar] [CrossRef] [Green Version]
- Miloshevich, L.M.; Vo¨mel, H.; Whiteman, D.N.; Lesht, B.M.; Schmidlin, F.J.; Russo, F. Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation. J. Geophys. Res. 2006, 111, D09S10. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Reale, A.; Tilley, F.H.; Pettey, M.E.; Nalli, N.R.; Barnet, C.D. Assessment of NUCAPS S-NPP CrIS/ATMS sounding products using reference and conventional radiosonde observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2499–2509. [Google Scholar] [CrossRef]
- Chevallier, F.; Chéruy, F.; Scott, N.A.; Chédin, A. A neural network approach for a fast and accurate computation of longwave radiative budget. J. Appl. Meteorol. 1998, 37, 1385–1397. [Google Scholar] [CrossRef]
- Song, H.-J.; Sohn, B.-J.; Hong, S.-Y.; Hashino, T. Idealized numerical experiments on the microphysical evolution of warm-type heavy rainfall. J. Geophys. Res. Atmos. 2017, 122, 1685–1699. [Google Scholar] [CrossRef]
- Vance, A.K.; Taylor, J.P.; Hewison, T.J.; Elms, J. Comparison of in situ humidity data from aircraft, dropsonde, and radiosonde. J. Atmos. Ocean. Technol. 2004, 21, 921–932. [Google Scholar] [CrossRef] [Green Version]
- Soddell, J.R.; McGuffie, K.; Holland, G.J. Intercomparison of atmospheric soundings from the aerosonde and radiosonde. J. Appl. Meteorol. 2004, 43, 1260–1269. [Google Scholar] [CrossRef]
- Stokes, G.M.; Schwartz, S.E. The Atmospheric Radiation Measurement (ARM) program: Programmatic background and design of the cloud and radiation test bed. Bull. Am. Meteorol. Soc. 1994, 75, 1201–1221. [Google Scholar] [CrossRef]
- Bodeker, G.E.; Bojinski, S.; Cimini, D.; Dirksen, R.J.; Haeffelin, M.; Hannigan, J.W.; Hurst, D.F.; Leblanc, T.; Madonna, F.; Maturilli, M.; et al. Reference upper-air observations for climate: From concept to reality. Bull. Am. Meteorol. Soc. 2016, 97, 123–135. [Google Scholar] [CrossRef]
- Webster, P.J.; Lukas, R. The Coupled Ocean–Atmosphere Response Experiment. Bull. Am. Meteorol. Soc. 1992, 73, 1377–1416. [Google Scholar] [CrossRef] [Green Version]
- Halverson, J.B.; Rickenbach, R.; Roy, B.; Pierce, H.; Williams, E. Environmental characteristics of convective systems during TRMM LBA. Mon. Weather Rev. 2002, 130, 1493–1509. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Zhang, R.; Wan, Q.; Wang, B.; Wong, W.K.; Hu, Z.; Jou, B.J.-D.; Lin, Y.; Johnson, R.H.; Chang, C.-P.; et al. The Southern China Monsoon Rainfall Experiment (SCMREX). Bull. Am. Meteorol. Soc. 2017, 98, 999–1013. [Google Scholar] [CrossRef]
- Gettelman, A.; Walden, V.P.; Miloshevich, L.M.; Roth, W.L.; Halter, B. Relative humidity over Antarctica from radiosondes, satellites, and a general circulation model. J. Geophys. Res. 2006, 111, D09S13. [Google Scholar] [CrossRef] [Green Version]
- Treffeisen, R.; Krejci, R.; Ström, J.; Engvall, A.C.; Herber, A.; Thomason, L. Humidity observations in the Arctic troposphere over Ny-Ålesund, Svalbard based on 15 years of radiosonde data. Atmos. Chem. Phys. 2007, 7, 2721–2732. [Google Scholar] [CrossRef] [Green Version]
- Dzambo, A.M.; Turner, D.D. Characterizing relative humidity with respect to ice in midlatitude cirrus clouds as a function of atmospheric state. J. Geophys. Res. Atmos. 2016, 121, 12253–12269. [Google Scholar] [CrossRef]
- Noh, Y.-C.; Sohn, B.-J.; Kim, Y.; Joo, S.; Bell, W. Evaluation of temperature and humidity profiles of Unified Model and ECMWF analysis using GRAUAN radiosonde observations. Atmosphere 2016, 7, 94. [Google Scholar] [CrossRef] [Green Version]
- Lang, R.; Lawrence, M.G. Improvement of the vertical humidity distribution in the chemistry transport model MATCH through increased evaporation of convective precipitation. Geophys. Res. Lett. 2005, 32, L17812. [Google Scholar] [CrossRef]
- Milton, S.F.; Earnshaw, P. Evaluation of surface water and energy cycles in the Met Office global NWP model using CEOP data. J. Meteorol. Soc. Jpn. 2007, 85A, 43–72. [Google Scholar] [CrossRef] [Green Version]
- Agustí-Panareda, A.; Vasiljevic, D.; Beljaars, A.; Bock, O.; Guichard, F.; Nuret, M.; Garcia Mendez, A.; Andersson, E.; Bechtold, P.; Fink, A.; et al. Radiosonde humidity bias correction over the West African region for the special AMMA reanalysis at ECMWF. Q. J. R. Meteorol. Soc. 2009, 135, 595–617. [Google Scholar] [CrossRef]
- Faccani, C.; Rabier, F.; Fourrié, N.; Agusti-Panareda, A.; Karbou, F.; Moll, P.; Lafore, J.-P.; Nuret, M.; Hdidou, F.; Bock, O. The impact of the AMMA radiosonde data on the French global assimilation and forecast system. Weather Forecast. 2009, 24, 1268–1286. [Google Scholar] [CrossRef]
- Kennedy, A.D.; Dong, X.; Xi, B.; Xie, S.; Zhang, Y.; Chen, J. A comparison of MERRA and NARR reanalyses with the DOE ARM SGP data. J. Clim. 2011, 24, 4541–4557. [Google Scholar] [CrossRef]
- Feng, Y.; Cadeddu, M.; Kotamarthi, V.R.; Renju, R.; Raju, C.S. Humidity bias and effect on simulated aerosol optical properties during the Ganges Valley Experiment. Curr. Sci. 2016, 111, 93–100. [Google Scholar] [CrossRef]
- Yang, Y.; Moore, S.; Uddstrom, M.; Turner, R.; Carey-Smith, T. Model moist bias in the middle and upper troposphere during DEEPWAVE. Atmos. Sci. Lett. 2017, 18, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Burleyson, C.D.; Ma, P.-L.; Fast, J.D.; Rasch, P.J. Using the Atmospheric Radiation Measurement (ARM) datasets to evaluate climate models in simulating diurnal and seasonal variations of tropical clouds. J. Clim. 2018, 31, 3301–3325. [Google Scholar] [CrossRef]
- Pante, G.; Knippertz, P. Resolving Sahelian thunderstorms improves mid-latitude weather forecasts. Nat. Commun. 2019, 10, 3487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miloshevich, L.M.; Paukkunen, A.; Vömel, H.; Oltmans, S.J. Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements. J. Atmos. Ocean. Technol. 2004, 21, 1305–1327. [Google Scholar] [CrossRef]
- Miloshevich, L.M.; Vo¨mel, H.; Whiteman, D.N.; Leblanc, T. Accuracy assessment and correction of Vaisala RS92 radiosonde water vapor measurements. J. Geophys. Res. 2009, 114, D11305. [Google Scholar] [CrossRef] [Green Version]
- Vömel, H.; Selkirk, H.; Miloshevich, L.; Valverde-Canossa, J.; Valdés, J.; Kyrö, E.; Kivi, R.; Stolz, W.; Peng, G.; Diaz, J.A. Radiation dry bias of the Vaisala RS92 humidity sensor. J. Atmos. Ocean. Technol. 2007, 24, 953–963. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, M.; Vömel, H.; Hasebe, F.; Shiotani, M.; Ogino, S.-Y.; Iwasaki, S.; Nishi, N.; Shibata, T.; Shimizu, K.; Nishimoto, E.; et al. Seasonal to decadal variations of water vapor in the tropical lower stratosphere observed with balloon-borne cryogenic frost point hygrometers. J. Geophys. Res. 2010, 115, D18304. [Google Scholar] [CrossRef] [Green Version]
- Franklin, C.N.; Protat, A.; Leroy, D.; Fontaine, E. Controls on phase composition and ice water content in a convection-permitting model simulation of a tropical mesoscale convective system. Atmos. Chem. Phys. 2016, 16, 8767–8789. [Google Scholar] [CrossRef] [Green Version]
- Song, H.-J.; Sohn, B.-J. An evaluation of WRF microphysics schemes for simulating the warm-type heavy rain over the Korean peninsula. Asia-Pac. J. Atmos. Sci. 2018, 54, 1–12. [Google Scholar] [CrossRef]
- Song, H.-J.; Lim, B.; Joo, S. Evaluation of rainfall forecast with heavy rain types in the high-resolution Unified Model over South Korea. Weather Forecast. 2019, 34, 1277–1293. [Google Scholar] [CrossRef]
- Masunaga, H. Short-term versus climatological relationship between precipitation and tropospheric humidity. J. Clim. 2012, 25, 7983–7990. [Google Scholar] [CrossRef] [Green Version]
- Song, H.-J.; Sohn, B.-J. Two heavy rainfall types over the Korean peninsula in the humid East Asian summer environment: A satellite observation study. Mon. Weather Rev. 2015, 143, 363–382. [Google Scholar] [CrossRef]
- Deng, M.; Mace, G.G.; Wang, Z. Anvil productivities of tropical deep convective clusters and their regional differences. J. Atmos. Sci. 2016, 73, 3467–3487. [Google Scholar] [CrossRef] [Green Version]
- Cesana, G.; Chepfer, H.; Winker, D.; Getzewich, B.; Cai, X.; Jourdan, O.; Mioche, G.; Okamoto, H.; Hagihara, Y.; Noel, V.; et al. Using in situ airborne measurements to evaluate three cloud phase products derived from CALIPSO. J. Geophys. Res. Atmos. 2016, 121, 5788–5808. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M.P.; Holdridge, D.J.; Survo, P.; Lehtinen, R.; Baxter, S.; Toto, T.; Johnson, K.L. Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains site. Atmos. Meas. Tech. 2016, 9, 3115–3129. [Google Scholar] [CrossRef] [Green Version]
- Park, C.G.; Roh, K.M.; Cho, J.H. Radiosonde sensors bias in precipitable water vapor from comparisons with Global Positioning System measurements. J. Astron. Space Sci. 2012, 29, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.T.; Iwabuchi, T.; Lim, G.H. Comparison of precipitable water derived from ground-based GPS measurements with radiosonde observations over the Korean peninsula. J. Meteorol. Soc. Jpn. 2007, 85, 733–746. [Google Scholar] [CrossRef] [Green Version]
- Park, H.-E.; Yoo, S.-M.; Yoon, H.S.; Chung, J.-K.; Cho, J. Performance analysis of mapping functions and mean temperature equations for GNSS precipitable water vapor in the Korean peninsula. J. Posit. Navig. Tim. 2016, 5, 75–85. [Google Scholar] [CrossRef] [Green Version]
- Seidel, D.J.; Sun, B.; Pettey, M.; Reale, A. Global radiosonde balloon drift statistics. J. Geophys. Res. 2011, 116, D07102. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Dee, D. ERA5 reanalysis is in production. In ECMWF Newsletter; ECMWF: Reading, UK, 2016; Volume 147. [Google Scholar]
- Simmons, A.J.; Untch, A.; Jakob, C.; Kållberg, P.; Und’en, P. Stratospheric water vapour and tropical tropopause temperatures in ECMWF analyses and multi-year simulations. Q. J. R. Meteorol. Soc. 1999, 125, 353–386. [Google Scholar] [CrossRef]
- Tompkins, A.M.; Gierens, K.; Rädel, G. Ice supersaturation in the ECMWF integrated forecast system. Q. J. R. Meteorol. Soc. 2007, 133, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, L.; Dai, A.; Immler, F.; Sommer, M.; Vömel, H. Radiation dry bias correction of Vaisala RS92 humidity data and its impacts on historical radiosonde data. J. Atmos. Ocean. Technol. 2013, 30, 197–214. [Google Scholar] [CrossRef]
- Dzambo, A.M.; Turner, D.D.; Mlawer, E.J. Evaluation of two Vaisala RS92 radiosonde solar radiative dry bias correction algorithms. Atmos. Meas. Tech. 2016, 9, 1613–1626. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.D.; Lesht, B.M.; Clough, S.A.; Liljegren, J.C.; Revercomb, H.E.; Tobin, D.C. Dry bias and variability in Vaisala RS80-H radiosondes: The ARM experience. J. Atmos. Ocean. Technol. 2003, 20, 117–132. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.I.; Lee, S.W.; Woo, S.B.; Kim, J.C.; Kim, Y.-G.; Yang, S.G. Evaluation of radiosonde humidity sensors at low temperature using ultralow-temperature humidity chamber. Adv. Sci. Res. 2018, 15, 207–212. [Google Scholar] [CrossRef]
- Lee, S.-W.; Choi, B.I.; Woo, S.-B.; Kim, J.C.; Kim, Y.-G. Calibration of a radiosonde humidity sensor at low temperature and low pressure. Metrologia 2019, 56, 5. [Google Scholar] [CrossRef]
- Smith, R.N.B. A scheme for predicting layer clouds and their water content in a general circulation model. Q. J. R. Meteorol. Soc. 1990, 116, 435–460. [Google Scholar] [CrossRef]
Index | Code | Station Name | Location Information | Number of Soundings |
---|---|---|---|---|
1 | RKSO | Osan | 37.10° N, 127.03° E, 52 m | 50,303 |
2 | RKJJ | Gwangju | 35.12° N, 126.82° E, 13 m | 40,584 |
3 | 47807 | Fukuoka | 33.58° N, 130.38° E, 15 m | 33,769 |
4 | 47138 | Pohang | 36.03° N, 129.38° E, 6 m | 28,629 |
5 | 47185 | Gosan | 33.29° N, 126.16° E, 73 m | 20,714 |
6 | 47102 | Baengnyeongdo | 37.97° N, 124.63° E, 158 m | 13,631 |
7 | 47090 | Sokcho | 38.25° N, 128.56° E, 18 m | 10,743 |
8 | 47169 | Heuksando | 34.69° N, 125.45° E, 69 m | 3843 |
9 | RKSB | Paju | 37.87° N, 126.80° E, 10 m | 2381 |
10 | JCCX | Sea | 35.00° N, 124.00° E, 0 m | 133 |
11 | UWEC | Sea | 38.90° N, 131.00° E, 0 m | 79 |
12 | UUPB | Sea | 33.80° N, 128.90° E, 0 m | 57 |
13 | JBOA | Sea | 33.00° N, 128.20° E, 0 m | 56 |
14 | JIVB | Sea | 35.60° N, 130.60° E, 0 m | 36 |
15 | RKTU | Gimpo | 36.70° N, 127.50° E, 58 m | 26 |
16 | 47132 | Daejeon | 36.33° N, 127.38° E, 64 m | 21 |
17 | EREI | Sea | 33.80° N, 129.00° E, 0 m | 21 |
18 | RKNN | Gangneung | 37.75° N, 128.94° E, 6 m | 17 |
19 | 47131 | Cheongju | 36.63° N, 127.43° E, 59 m | 17 |
20 | EREB | Sea | 35.30° N, 130.00° E, 0 m | 15 |
21 | RKNH | Hoengsong | 37.43° N, 127.94° E, 101 m | 13 |
22 | RKSS | Gimpo | 37.54° N, 126.80° E, 18 m | 11 |
23 | 47141 | Gunsan | 35.92° N, 126.62° E, 10 m | 8 |
24 | 47139 | Pohang2 | 35.98° N, 129.42° E, 20 m | 5 |
25 | 47101 | Chuncheon | 37.90° N, 127.74° E, 78 m | 4 |
26 | RKJY | Yeosu | 34.84° N, 127.62° E, 21 m | 4 |
27 | RKSM | Seongnam | 37.43° N, 127.11° E, 20 m | 3 |
28 | RKTN | Daegu | 35.88° N, 128.64° E, 37 m | 2 |
29 | RKPK | Kimhae | 35.18° N, 128.92° E, 6 m | 2 |
30 | 47104 | Bukgangneung | 37.88° N, 127.72° E, 76 m | 1 |
31 | UAAQ | Sea | 35.60° N, 130.30° E, 0 m | 1 |
32 | 47154 | Busan | 35.17° N, 129.13° E, 2 m | 1 |
33 | RKPS | Sacheon | 35.08° N, 128.08° E, 8 m | 1 |
34 | RBOA | Sea | 33.40° N, 128.40° E, 0 m | 1 |
35 | 47187 | Moseulpo | 33.20° N, 126.27° E, 13 m | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.-J.; Kim, S.; Lee, H.; Kim, K.-H. Climatology of Tropospheric Relative Humidity over the Korean Peninsula from Radiosonde and ECMWF Reanalysis. Atmosphere 2020, 11, 704. https://doi.org/10.3390/atmos11070704
Song H-J, Kim S, Lee H, Kim K-H. Climatology of Tropospheric Relative Humidity over the Korean Peninsula from Radiosonde and ECMWF Reanalysis. Atmosphere. 2020; 11(7):704. https://doi.org/10.3390/atmos11070704
Chicago/Turabian StyleSong, Hwan-Jin, Sunyoung Kim, Hyesook Lee, and Ki-Hoon Kim. 2020. "Climatology of Tropospheric Relative Humidity over the Korean Peninsula from Radiosonde and ECMWF Reanalysis" Atmosphere 11, no. 7: 704. https://doi.org/10.3390/atmos11070704
APA StyleSong, H. -J., Kim, S., Lee, H., & Kim, K. -H. (2020). Climatology of Tropospheric Relative Humidity over the Korean Peninsula from Radiosonde and ECMWF Reanalysis. Atmosphere, 11(7), 704. https://doi.org/10.3390/atmos11070704