Performance of Forecasts of Hurricanes with and without Upper-Level Troughs over the Mid-Latitudes
Abstract
:1. Introduction
2. Methods
2.1. Operational Forecast, Verified Reanalysis, and Observation Data
2.2. Atlantic Hurricanes That Moved Northward and Approached the US between 2007 and 2019
2.3. Additional Observations in September 2017 and Experimental Design
3. Results
3.1. Influence of Upper-Level Trough Prediction on Hurricane Track Forecast
3.2. Atlantic Hurricane Track Forecasting Skill between 2007 and 2019
3.3. Observing System Experiments Using Observation Data Collected over the Arctic and Atlantic Oceans
3.3.1. Impact of Inclusion of Additional Arctic Radiosonde Observation Data on Track Forecast of Hurricane Irma (A Trough Case)
3.3.2. Impact of Inclusion of Additional Aircraft Dropsonde Observation Data on Track Forecast of Hurricane Irma (A Trough Case)
3.3.3. Impact of Inclusion of Additional Arctic Radiosonde Observation Data on Track Forecast of Hurricane Jose (No Trough Case)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Payne, K.A.; Elsberry, R.L.; Boothe, M.A. Assessment of western north pacific 96- and 120-h track guidance and present forecastability. Weather Forecast. 2007, 22, 1003–1015. [Google Scholar] [CrossRef]
- Elsberry, R.L. Advances in tropical cyclone motion prediction and recommendations for the future. WMO Bullentin. 2007, 56, 131–134. [Google Scholar]
- Yamaguchi, M.; Sakai, R.; Kyoda, M.; Komori, T.; Kadowaki, T. Typhoon ensemble prediction system developed at the Japan Meteorological agency. Mon. Weather Rev. 2009, 137, 2592–2604. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Majumandar, S.J. Using TIGGE data to diagnose initial perturbations and their growth for tropical cyclone ensemble forecasts. Mon. Weather Rev. 2010, 138, 3634–3655. [Google Scholar] [CrossRef] [Green Version]
- Ito, K.; Kuroda, T.; Saito, K.; Wada, A. Forecasting a large number of tropical cyclone intensities around Japan using a high-resolution atmosphere-ocean coupled model. Weather Forecast. 2015, 30, 793–808. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Ishida, J.; Sato, H.; Nakagawa, M. WGNE Intercomparison of tropical cyclone forecasts by operational NWP models: A quarter-century and beyond. Bull. Am. Meteorol. Soc. 2017, 98, 2337–2349. [Google Scholar] [CrossRef]
- McNally, T.; Bonavita, M.; Thépaut, J.-N. The role of satellite data in the forecasting of Hurricane Sandy. Mon. Weather Rev. 2014, 142, 634–646. [Google Scholar] [CrossRef]
- Wu, C.; Lin, P.H.; Aberson, S.; Yeh, T.C.; Huang, W.P.; Chou, K.H.; Hong, J.S.; Lu, G.C.; Fong, C.T.; Hsu, K.C.; et al. Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR). Bull. Am. Meteorol. Soc. 2005, 86, 787. [Google Scholar]
- Yamashita, K.; Ohta, Y.; Sato, K.; Nakazawa, T. Observing-system experiments using the operational NWP system of JMA. RSMC Tokyo Typhoon Center Tech. Rev. 2009, 12, 29–44. [Google Scholar]
- Ito, K.; Yamada, H.; Yamaguchi, M.; Nakazawa, T.; Nagahama, N.; Shimizu, K.; Ohigashi, T.; Shinoda, T.; Tsuboki, K. Analysis and forecast using dropsonde data from the innercore region of Tropical Cyclone Lan (2017) obtained during the first aircraft missions of T-PARCII. SOLA 2018, 14, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Aberson, S.D. 10 year of hurricane synoptic surveillance (1997-2006). Mon. Weather Rev. 2009, 138, 1536–1549. [Google Scholar] [CrossRef]
- Majumdar, S.J. A review of targeted observations. Bull. Am. Meteor. Soc. 2016, 97, 2287–2303. [Google Scholar] [CrossRef]
- Jung, T.; Gordon, N.D.; Bauer, P.; Bromwich, D.H.; Chevallier, M.; Day, J.J.; Dawson, J.; Doblas-Reyes, F.; Fairall, C.; Goessling, H.F.; et al. Advancing polar prediction capabilities on daily to seasonal time scales. Bull. Am. Meteorol. Soc. 2016, 97, 1631–1647. [Google Scholar] [CrossRef] [Green Version]
- Inoue, J.; Enomoto, T.; Miyoshi, T.; Yamane, S. Impact of observations from Arctic drifting buoys on the reanalysis of surface fields. Geophys. Res. Lett. 2009, 36, L08501. [Google Scholar] [CrossRef] [Green Version]
- Inoue, J.; Enomoto, T.; Hori, M.E. The impact of radiosonde data over the ice-free Arctic Ocean on the atmospheric circulation in the Northern Hemisphere. Geophys. Res. Lett. 2013, 40, 864–869. [Google Scholar] [CrossRef]
- Inoue, J.; Yamazaki, A.; Ono, J.; Dethloff, K.; Maturilli, M.; Neuber, R.; Edwards, R.; Yamaguchi, H. Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route. Sci. Rep. 2015, 5, 16868. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, A.; Inoue, J.; Dethloff, K.; Maturilli, M.; Konig-Langlo, G. Impact of radiosonde observations on forecasting summertime Arctic cyclone formation. J. Geophys. Res. Atmos. 2015, 120, 3249–3273. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Inoue, J.; Yamazaki, A.; Kim, J.-H.; Maturilli, M.; Dethloff, K.; Hudson, S.R.; Granskog, M.A. Improved forecasts of winter weather extremes over mid-latitudes with extra Arctic observations. J. Geophys. Res. Oceans 2017, 122. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Inoue, J.; Yamazaki, A.; Kim, J.-H.; Makshtas, A.; Kustov, V.; Maturilli, M.; Dethloff, K. Impact on predictability of tropical and mid-latitude cyclones by extra Arctic observations. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef]
- Ito, K.; Wu, C.-C. Typhoon-position-oriented sensitivity analysis. Part I: Theory and verification. J. Atmos. Sci. 2013, 70, 2525–2546. [Google Scholar] [CrossRef]
- Matsueda, M.; Nakazawa, T. Early warning products for severe weather events derived from operational medium-range ensemble forecasts. Meteorol. Appl. 2015, 22, 213–222. [Google Scholar] [CrossRef]
- Leonardo, N.M.; Colle, B.A. Verification of multi-model ensemble forecasts of North Atlantic tropical cy-clones. Weather Forecast. 2017, 32, 2083–2101. [Google Scholar] [CrossRef]
- Swinbank, R.; Kyouda, M.; Buchanan, P.; Froude, L.; Hamill, T.M.; Hewson, T.D.; Keller, J.H.; Matsueda, M.; Methven, J.; Pappenberger, F.; et al. The TIGGE project and its achievements. Bull. Am. Meteorol. Soc. 2016, 97, 49–67. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, D.P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Horányi, A.; Sabater, J.M.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; et al. Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsl. 2019, 159, 17–24. [Google Scholar] [CrossRef]
- Jones, S.C.; Harr, P.A.; Abraham, J.; Bosart, L.F.; Bowyer, P.J.; Evans, J.L.; Hanley, D.E.; Hanstrum, B.N.; Hart, R.E.; Lalaurette, F.; et al. The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Weather Forecast. 2003, 18, 1052–1092. [Google Scholar] [CrossRef]
- Enomoto, T.; Miyoshi, T.; Moteki, Q.; Inoue, J.; Hattori, M.; Kuwano-Yoshida, A.; Komori, N.; Yamane, S. Observing-system research and ensemble data assimilation at JAMSTEC. In Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II); Park, S.K., Xu, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 509–526. [Google Scholar]
- Enomoto, T.; Kuwano-Yoshida, A.; Komori, N.; Ofuchi, W. Description of AFES 2: Improvements for high-resolution and coupled simulations. In High Resolution Numerical Modelling of the Atmosphere and Ocean; Hamilton, K., Ohfuchi, W., Eds.; Springer: New York, NY, USA, 2008; pp. 77–97. [Google Scholar]
- Ohfuchi, W.; Nakamura, H.; Yoshioka, M.K.; Enomoto, T.; Takaya, K.; Peng, X.; Yamane, S.; Nishimura, T.; Kurihara, Y.; Ninomiya, K. 10- km mesh meso-scale resolving simulations of the global atmosphere on the Earth Simulator-Preliminary outcomes of AFES (AGCM for the Earth Simulator). J. Earth. Simul. 2004, 1, 8–34. [Google Scholar]
- Hunt, B.R.; Kostelich, E.J.; Szunyogh, I. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Phys. D 2007, 230, 112–126. [Google Scholar] [CrossRef] [Green Version]
- Miyoshi, T.; Yamane, S. Local ensemble transform Kalman filtering with an AGCM at a T159/L48 resolution. Mon. Weather Rev. 2007, 135, 3841–3861. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Inoue, J.; Alexander, S.P.; McFarquhar, G.; Yamazaki, A. Improved reanalysis and prediction of atmospheric fields over the Southern Ocean using campaign-based radiosonde observations. Geophys. Res. Lett. 2018. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Inoue, J.; Yamazaki, A.; Hirasawa, N.; Sugiura, K.; Yamada, K. Antarctic radiosonde observations reduce uncertainties and errors in reanalyses and forecasts over the Southern Ocean: An extreme cyclone case. Adv. Atmos. Sci. 2020, 37, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Takaya, K.; Nakamura, H. A formulation of a phaseindependent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci. 2001, 58, 608–627. [Google Scholar] [CrossRef]
- Wirth, V.; Riemer, M.; Chang, E.K.M.; Martius, O. Rossby Wave Packets on the Midlatitude Waveguide—A review. Mon. Weather Rev. 2018, 146, 1965–2001. [Google Scholar] [CrossRef]
Name | Period | Focused Forecast Duration | Cases | |
---|---|---|---|---|
Noel | 24 October–06 November 2007 | 12UTC 30 October–00UTC 04 November 2007 | Trough | |
Hanna | 28 August–08 September 2008 | 12UTC 03 September–00UTC 08 September 2008 | Trough | |
Ike | 01 September–15 September 2008 | 12UTC 10 September–00UTC 15 September 2008 | Trough | |
Bill | 15 August–26 August 2009 | 12UTC 18 August–00UTC 23 August 2009 | No Trough | |
Earl | 24 August–06 September 2010 | 12UTC 31 August–00UTC 04 September 2010 | Trough | |
Igor | 08 September–23 September 2010 | 12UTC 17 September–00UTC 22 September 2010 | Trough | |
Irene | 21 August–30 August 2011 | 12UTC 24 August–00UTC 29 August 2011 | Trough | |
Katia | 28 August–12 September 2011 | 12UTC 06 September–00UTC 11 September 2011 | Trough | |
Maria | 06 September–16 September 2011 | 12UTC 12 September–00UTC 17 September 2011 | Trough | |
Opheria | 20 September–04 October 2011 | 12UTC 28 September–00UTC 03 October 2011 | Trough | |
Leslie | 28 August–12 September 2012 | 12UTC 07 September–00UTC 12 September 2012 | Trough | |
Rafael | 12 October–26 October 2012 | 12UTC 13 October–00UTC 18 October 2012 | Trough | |
Arthur | 28 June–09 July 2014 | 00UTC 01 July–12UTC 05 July 2014 | Trough | |
Cristobal | 23 August–02 September 2014 | 00UTC 25 August–12UTC 29 August 2014 | Trough | |
Gronzalo | 11 October–20 October 2014 | 00UTC 15 October–12UTC 19 October 2014 | No Trough | |
Joaquin | 26 September–15 October 2015 | 12UTC 02 October–00UTC 07 October 2015 | Trough | |
Hermine | 28 August–08 September 2016 | 00UTC 30 August–12UTC 03 September 2016 | No Trough | |
Matthew | 28 September–10 October 2016 | 00UTC 05 October–12UTC 09 October 2016 | Trough | |
Nicole | 04 October–19 October 2016 | 00UTC 11 October–12UTC 15 October 2016 | No Trough | |
Gert | 12 August–18 August 2017 | 12UTC 13 August–00UTC 18 August 2017 | Trough | |
Harvey | 17 August–02 September 2017 | 12UTC 23 August–00UTC 28 August 2017 | No Trough | |
Irma | 30 August–13 September 2017 | 12UTC 07 September–00UCT 12 September 2017 | Trough | |
Jose | 05 September–25 September 2017 | 12UTC 15 September–00UTC 20 September 2017 | No Trough | |
Maria | 16 September–02 October 2017 | 12UTC 21 September–00UTC 26 September 2017 | No Trough | |
Nate | 04 October–11 October 2017 | 00UTC 05 October–12UTC 09 October 2017 | Trough | |
Michael | 06 October–15 October 2018 | 12UTC 08 October–00UTC 13 October 2018 | Trough | |
Dorian | 24 August–10 September 2019 | 12UTC 03 September–00UTC 08 September 2019 | Trough | |
Humberto | 13 September–20 September 2019 | 00UTC 15 September–12UTC 19 September 2019 | Trough | |
Jerry | 17 September–24 September 2019 | 00UTC 21 September–12UTC 25 September 2019 | No Trough |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, K.; Inoue, J.; Yamazaki, A. Performance of Forecasts of Hurricanes with and without Upper-Level Troughs over the Mid-Latitudes. Atmosphere 2020, 11, 702. https://doi.org/10.3390/atmos11070702
Sato K, Inoue J, Yamazaki A. Performance of Forecasts of Hurricanes with and without Upper-Level Troughs over the Mid-Latitudes. Atmosphere. 2020; 11(7):702. https://doi.org/10.3390/atmos11070702
Chicago/Turabian StyleSato, Kazutoshi, Jun Inoue, and Akira Yamazaki. 2020. "Performance of Forecasts of Hurricanes with and without Upper-Level Troughs over the Mid-Latitudes" Atmosphere 11, no. 7: 702. https://doi.org/10.3390/atmos11070702
APA StyleSato, K., Inoue, J., & Yamazaki, A. (2020). Performance of Forecasts of Hurricanes with and without Upper-Level Troughs over the Mid-Latitudes. Atmosphere, 11(7), 702. https://doi.org/10.3390/atmos11070702