Improved Simulation of the Antarctic Stratospheric Final Warming by Modifying the Orographic Gravity Wave Parameterization in the Beijing Climate Center Atmospheric General Circulation Model
Abstract
:1. Introduction
2. Model, Experiments, and Analysis Methods
2.1. General Description of the Middle-Atmosphere Version of BCC-AGCM
2.2. Parameterization of Orographic GWs
2.3. Experimental Design
2.4. The Transformed Eulerian-Mean (TEM) Framework
3. Results
3.1. The Austral SFW in the BCC-AGCM
3.2. Changes in GWD
3.3. Resolved Wave Forcing Responses
3.4. Total Wave Forcing
3.5. Polar Downwelling in the Southern Hemisphere
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morgenstern, O.; Hegglin, M.I.; Rozanov, E.; O’Connor, F.M.; Abraham, N.L.; Akiyoshi, H.; Archibald, A.T.; Bekki, S.; Butchart, N.; Chipperfield, N.P.; et al. Review of the global models used within phase 1 of the Chemistry-Climate Model Initiative (CCMI). Geosci. Model Dev. 2017, 10, 639–671. [Google Scholar] [CrossRef] [Green Version]
- Morgenstern, O.; Giorgetta, M.A.; Shibata, K.; Eyring, V.; Waugh, D.W.; Shepherd, T.G.; Akiyoshi, H.; Austin, J.; Baumgaertner, A.J.G.; Bekki, S.; et al. Review of the formulation of present-generation chemistry-climate models and associated forcings. J. Geophys. Res. 2010, 115, D00M02. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Butchart, N.; Waugh, D.W.; Akiyoshi, H.; Austin, J.; Bekki, S.; Bodeker, G.E.; Boville, B.A.; Brühl, C.; Chipperfield, M.P.; et al. Assessment of temperature, trace species and ozone in chemistry-climate model simulations of the recent past. J. Geophys. Res. 2006, 111, D22308. [Google Scholar] [CrossRef]
- Eyring, V.; Shepherd, T.G.; Waugh, D.W. SPARC report on the evaluation of chemistry-climate models. SPARC Tech. Rep. 2010, 5, 425. [Google Scholar]
- Wilcox, L.J.; Charlton-Perez, A.J. Final warming of the Southern Hemisphere polar vortex in high- and low-top CMIP5 models. J. Geophys. Res. Atmos. 2013, 118, 2535–2546. [Google Scholar] [CrossRef] [Green Version]
- Butchart, N.; Charlton-Perez, A.J.; Cionni, I.; Hardiman, S.C.; Haynes, P.H.; Krüger, K.; Kushner, P.J.; Newman, P.A.; Osprey, S.M.; Perlwitz, J.; et al. Multimodel climate and variability of the stratosphere. J. Geophys. Res. 2011, 116, D05102. [Google Scholar] [CrossRef] [Green Version]
- Stolarski, R.S.; Douglass, A.R.; Gupta, M.; Newman, P.A.; Pawson, S.; Schoeberl, M.R.; Nielsen, J.E. An ozone increase in the Antarctic summer stratosphere: A dynamical response to the ozone hole. Geophys. Res. Lett. 2006, 33, L21805. [Google Scholar] [CrossRef]
- Sun, L.; Chen, G.; Robinson, W.A. The role of stratospheric polar vortex breakdown in Southern Hemisphere climate trends. J. Atmos. Sci. 2014, 71, 2335–2353. [Google Scholar] [CrossRef]
- Barnes, E.A.; Barnes, N.W.; Polvani, L.M. Delayed Southern Hemisphere climate change induced by stratospheric ozone recovery, as projected by the CMIP5 models. J. Clim. 2014, 27, 852–867. [Google Scholar] [CrossRef] [Green Version]
- Garcia, R.R.; Smith, A.K.; Kinnison, D.E.; de la Cámara, A.; Murphy, D.J. Modification of the gravity wave parameterization in the Whole Atmosphere Community Climate Model: Motivation and results. J. Atmos. Sci. 2017, 74, 275–291. [Google Scholar] [CrossRef]
- McLandress, C.; Shepherd, T.G.; Polavarapu, S.; Beagley, S.R. Is missing orographic gravity wave drag near 60 °S the cause of the stratospheric zonal wind biases in chemistry-climate models? J. Atmos. Sci. 2012, 69, 802–818. [Google Scholar] [CrossRef] [Green Version]
- De la Cámara, A.; Lott, F.; Jewtoukoff, V.; Plougonven, R.; Hertzog, A. On the gravity wave forcing during the southern stratospheric final warming in LMDZ. J. Atmos. Sci. 2016, 73, 3213–3226. [Google Scholar] [CrossRef]
- Sato, K.; Yasui, R.; Miyoshi, Y. The momentum budget in the stratosphere, mesosphere, and lower thermosphere. Part I: Contribution of different wave types and in situ generation of Rossby waves. J. Atmos. Sci. 2018, 75, 3613–3633. [Google Scholar] [CrossRef]
- Yasui, R.; Sato, K.; Miyoshi, Y. The momentum budget in the stratosphere, mesosphere, and lower thermosphere. Part II: The in situ generation of gravity waves. J. Atmos. Sci. 2018, 75, 3635–3651. [Google Scholar] [CrossRef]
- Sato, K.; Hirano, S. The climatology of the Brewer-Dobson circulation and the contribution of gravity waves. Atmos. Chem. Phys. 2019, 19, 4517–4539. [Google Scholar] [CrossRef] [Green Version]
- Scheffler, G.; Pulido, M. Estimation of gravity-wave parameters to alleviate the delay in the Antarctic vortex breakup in general circulation models. Q. J. R. Meteorol. Soc. 2017, 143, 2157–2167. [Google Scholar] [CrossRef] [Green Version]
- Alexander, M.J.; Eckermann, S.D.; Broutman, D.; Ma, J. Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via satellite. Geophys. Res. Lett. 2009, 36, L12816. [Google Scholar] [CrossRef] [Green Version]
- Alexander, M.J.; Grimsdell, A.W. Seasonal cycle of orographic gravity wave occurrence above small islands in the Southern Hemisphere: Implications for effects on the general circulation. J. Geophys. Res. Atmos. 2013, 118, 11589–11599. [Google Scholar] [CrossRef]
- Sato, K.; Watanabe, S.; Kawatani, Y.; Tomikawa, Y.; Miyazaki, K.; Takahashi, M. On the origins of mesospheric gravity waves. Geophys. Res. Lett. 2009, 36, L19801. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Tateno, S.; Watanabe, S.; Kawatani, Y. Gravity wave characteristics in the Southern Hemisphere revealed by a high resolution middle-atmosphere general circulation model. J. Atmos. Sci. 2012, 69, 1378–1396. [Google Scholar] [CrossRef]
- Hindley, N.P.; Wright, C.J.; Smith, N.D.; Mitchell, N.J. The southern stratospheric gravity wave hot spot: Individual waves and their momentum fluxes measured by COSMIC GPS-RO. Atmos. Chem. Phys. 2015, 15, 7797–7818. [Google Scholar] [CrossRef] [Green Version]
- McFarlane, N.A. The effect of orographically excited wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci. 1987, 44, 1775–1800. [Google Scholar] [CrossRef] [Green Version]
- Beres, J.H.; Alexander, M.J.; Holton, J.R. A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind. J. Atmos. Sci. 2004, 61, 324–337. [Google Scholar] [CrossRef] [Green Version]
- De la Cámara, A.; Lott, F. A stochastic parameterization of the gravity waves emitted by fronts and jets. Geophys. Res. Lett. 2015, 42, 2071–2078. [Google Scholar] [CrossRef]
- Wu, T.; Lu, Y.; Fang, Y.; Xin, X.; Li, L.; Li, W.; Jie, W.; Zhang, J.; Liu, Y.; Zhang, L.; et al. The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev. 2019, 12, 1573–1600. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Wu, T.; Jie, W.; Scaife, A.A.; Andrews, M.B.; Richter, J.H. Variability of the stratospheric quasi-biennial oscillation and its wave forcing simulated in the Beijing Climate Center Atmospheric General Circulation Model. J. Atmos. Sci. 2020, 77, 149–165. [Google Scholar] [CrossRef]
- Richter, J.H.; Sassi, F.; Garcia, R.R. Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci. 2010, 67, 136–156. [Google Scholar] [CrossRef]
- Lindzen, R.S. Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res. 1981, 86, 9707–9714. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-J.; Doyle, J.D. Extension of an orographic drag parametrization scheme to incorporate orographic anisotropy and flow blocking. Q. J. R. Meteorol. Soc. 2005, 131, 1893–1921. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn. 2015, 93, 5–48. [Google Scholar] [CrossRef] [Green Version]
- Andrews, D.G.; Holton, J.R.; Leovy, C.B. Middle Atmosphere Dynamics; Academic Press: Cambridge, MA, USA, 1987; p. 489. [Google Scholar]
- Black, R.W.; McDaniel, B.A. Interannual variability in the Southern Hemisphere circulation organized by stratospheric final warming events. J. Atmos. Sci. 2007, 64, 2968–2974. [Google Scholar] [CrossRef]
- Warner, C.D.; McIntyre, M.E. On the propagation and dissipation of gravity wave spectra through a realistic middle atmosphere. J. Atmos. Sci. 1996, 53, 3213–3235. [Google Scholar] [CrossRef] [Green Version]
- Hines, C.O. Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part I: Basic formulation. J. Atmos. Sol.-Terr. Phys. 1997, 59, 371–386. [Google Scholar] [CrossRef]
- Scinocca, J.F. An accurate spectral non-orographic gravity wave parameterization for general circulation models. J. Atmos. Sci. 2003, 60, 667–682. [Google Scholar] [CrossRef]
- Scheffler, G.; Pulido, M. Compensation between resolved and unresolved wave drag in the stratospheric final warmings of the Southern Hemisphere. J. Atmos. Sci. 2015, 72, 4393–4411. [Google Scholar] [CrossRef]
- Xu, X.; Song, J.J.; Wang, Y.; Xue, M. Quantifying the effect of horizontal propagation of three-dimensional mountain waves on the wave momentum flux using Gaussian beam approximation. J. Atmos. Sci. 2017, 74, 1783–1798. [Google Scholar] [CrossRef]
- Xu, X.; Wang, Y.; Xue, M.; Zhu, K. Impacts of horizontal propagation of orographic gravity waves on the wave drag in the stratosphere and lower mesosphere. J. Geophys. Res. Atmos. 2017, 122, 11301–11312. [Google Scholar] [CrossRef]
- Plougonven, R.; Hertzog, A.; Guez, L. Gravity waves over Antarctica and the Southern Ocean: Consistent momentum fluxes in mesoscale simulations and stratospheric balloon observations. Quart. J. Roy. Meteor. Soc. 2013, 139, 101–118. [Google Scholar] [CrossRef]
- Hendricks, E.A.; Doyle, J.D.; Eckermann, S.D.; Jiang, Q.; Reinecke, P.A. What is the source of the stratospheric gravity wave belt in austral winter? J. Atmos. Sci. 2014, 71, 1583–1592. [Google Scholar] [CrossRef]
- Jewtoukoff, V.; Hertzog, A.; Plougonven, R.; de la Cámara, A.; Lott, F. Gravity waves in the Southern Hemisphere derived from balloon observations and the ECMWF analyses. J. Atmos. Sci. 2015, 72, 3449–3468. [Google Scholar] [CrossRef]
- Shibuya, R.; Sato, K.; Tomikawa, Y.; Tsutsumi, M.; Sato, T. A study of multiple tropopause structures caused by inertia-gravity waves in the Antarctic. J. Atmos. Sci. 2015, 72, 2109–2130. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Wu, T.; Xu, X.; Zhang, L.; Chu, M. Improved Simulation of the Antarctic Stratospheric Final Warming by Modifying the Orographic Gravity Wave Parameterization in the Beijing Climate Center Atmospheric General Circulation Model. Atmosphere 2020, 11, 576. https://doi.org/10.3390/atmos11060576
Lu Y, Wu T, Xu X, Zhang L, Chu M. Improved Simulation of the Antarctic Stratospheric Final Warming by Modifying the Orographic Gravity Wave Parameterization in the Beijing Climate Center Atmospheric General Circulation Model. Atmosphere. 2020; 11(6):576. https://doi.org/10.3390/atmos11060576
Chicago/Turabian StyleLu, Yixiong, Tongwen Wu, Xin Xu, Li Zhang, and Min Chu. 2020. "Improved Simulation of the Antarctic Stratospheric Final Warming by Modifying the Orographic Gravity Wave Parameterization in the Beijing Climate Center Atmospheric General Circulation Model" Atmosphere 11, no. 6: 576. https://doi.org/10.3390/atmos11060576
APA StyleLu, Y., Wu, T., Xu, X., Zhang, L., & Chu, M. (2020). Improved Simulation of the Antarctic Stratospheric Final Warming by Modifying the Orographic Gravity Wave Parameterization in the Beijing Climate Center Atmospheric General Circulation Model. Atmosphere, 11(6), 576. https://doi.org/10.3390/atmos11060576