Sensitivity of Volcanic Ash Dispersion Modelling to Input Grain Size Distribution Based on Hydromagmatic and Magmatic Deposits
Abstract
:1. Introduction
2. Compilation of Published Grain Size Data and Selection of PSDs for Modelling
- TGSD, compiled from samples collected at a range of distances from source and including grains in the size range used by the VAAC default PSD (≤ 100 µm).
- Grain size distributions or median grain size at a range of distances from the source.
2.1. Total Grain Size Distributions
2.2. Change in Grain Size with Distances from Source
3. Methods
3.1. The London VAAC Default PSD
3.2. The Phi (Φ) scale for PSDs
3.3. Normalising TGSDs to ≤ 125 µm and Selecting Eruptions for Modelling
3.4. NAME Simulations
3.5. Quantifying the Impact on Dispersion Model Forecasts
- Fractional bias (FB) measures systematic bias, with values ranging from +2 to −2 and positive values indicating an overprediction.
- Pearson’s Correlation Coefficient (PCC) tests ash mass loadings paired in time and space and quantifies differences in extent and concentration of the plumes, with values of +1 and −1 indicating a positive and negative linear relationship, respectively.
- Figure of Merit in Space (FoM) compares the spatial extents of the plumes, with values of 0 for no overlap to 100 for complete overlap.
- The Kolmogorov–Smirnov Parameter (KSP) represents the difference between concentration distributions, but takes no account of the spatial distribution. Values vary between 0 for identical distributions and 100 for distributions with no common values.
4. Results
4.1. Total Column Mass Loading and Sensitivity to PSD
4.2. Deposit Mass Loading
5. Discussion
5.1. Grain Size Distributions for Hydromagmatic Eruptions
5.2. Sensitivity of Modelled Ash Mass Loadings to Input PSDs
5.3. PSDs for Real-Time Forecasting During an Eruption
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. NAME Input Data
Phi | PSD | Cumulative Fraction | ||||||
---|---|---|---|---|---|---|---|---|
Diameter Range Boundary (µm) | Oruanui | Rotongaio | Grímsvötn 2004 | Eldgja 10th C | Eyjafjallajökull 2010 | Eyjafjallajökull 2010 Ground Only | Hekla 1991 | |
11 | 0.4883 | 0 | ||||||
10 | 0.9766 | 0 | 0.0186 | 0 | ||||
9.5 | 1.3811 | 0.0198 | ||||||
9 | 1.9531 | 0 | 0 | 0.0221 | 0.04 | 0.0283 | ||
8.5 | 2.7613 | 0.0292 | ||||||
8 | 3.9063 | 0.0157 | 0.0466 | 0.0381 | 0 | 0.1194 | 0.0566 | 0 |
7.5 | 5.5243 | 0.0541 | 0.0031 | 0.008 | ||||
7 | 7.8125 | 0.08 | 0.1274 | 0.0734 | 0.0093 | 0.2767 | 0.1419 | 0.0138 |
6.5 | 11.049 | 0.0992 | 0.0247 | 0.0291 | ||||
6 | 15.625 | 0.3086 | 0.2014 | 0.1353 | 0.0617 | 0.4609 | 0.2855 | 0.0539 |
5.5 | 22.097 | 0.1906 | 0.142 | 0.0859 | ||||
5 | 31.25 | 0.6286 | 0.4288 | 0.254 | 0.2901 | 0.6184 | 0.4851 | 0.155 |
4.5 | 44.194 | 0.3723 | 0.4969 | 0.2766 | ||||
4 | 62.5 | 0.7914 | 0.637 | 0.5425 | 0.6975 | 0.8063 | 0.7428 | 0.4338 |
3.5 | 88.388 | 0.7756 | 0.858 | 0.6499 | ||||
3 | 125 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
References
- Budd, L.; Griggs, S.; Howarth, D.; Ison, S. A fiasco of volcanic proportions? Eyjafjallajökull and the closure of European airspace. Mobilities 2011, 6, 31–40. [Google Scholar] [CrossRef]
- Civil Aviation Authority Guidance Regarding Flight Operations in the Vicinity of Volcanic Ash. CAP1236. Available online: http://publicapps.caa.co.uk/docs/33/CAP1236FEB17.pdf (accessed on 3 February 2020).
- Hort, M. VAAC Operational Dispersion Model Configuration Snap Shot. Available online: https://www.wmo.int/aemp/sites/default/files/VAAC_Modelling_OperationalModelConfiguration-2018.pdf (accessed on 3 February 2020).
- Witham, C.; Hort, M.; Thomson, D.; Leadbetter, S.J.; Devenish, B.J.; Webster, H.; Beckett, F.M.; Kristiansen, N. The Current Volcanic Ash Modelling Set-Up at the London VAAC. Met Office Technical Summary. Available online: https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/services/transport/aviation/vaac/london_vaac_current_modelling_setup.pdf (accessed on 16 April 2020).
- Beckett, F.M.; Witham, C.; Leadbetter, S.J.; Crocker, R.; Webster, H.; Hort, M.; Jones, A.; Devenish, B.; Thomson, D. Atmospheric dispersion modelling at the London VAAC: A review of developments since the 2010 Eyjafjajokull eruption. Atmosphere 2020, 11, 352. [Google Scholar] [CrossRef] [Green Version]
- Mastin, L.G.; Guffanti, M.; Servranckx, R.; Webley, P.; Barsotti, S.; Dean, K.; Durant, A.; Ewert, J.W.; Neri, A.; Rose, W.I.; et al. A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J. Volcanol. Geotherm. Res. 2009, 186, 10–21. [Google Scholar] [CrossRef]
- Bagheri, G.; Bonadonna, C. Aerodynamics of volcanic particles: Characterization of size, shape, and settling velocity. In Volcanic Ash: Hazard Observation; Mackie, S., Cashman, K.V., Ricketts, H., Rust, A.C., Watson, M., Eds.; Elsevier: London, UK, 2016; pp. 39–52. [Google Scholar]
- Beckett, F.M.; Witham, C.S.; Hort, M.C.; Stevenson, J.A.; Bonadonna, C.; Millington, S.C. Sensitivity of dispersion model forecasts of volcanic ash clouds to the physical characteristics of the particles. J. Geophys. Res. Atmos. 2015, 120, 11636–11652. [Google Scholar] [CrossRef] [Green Version]
- Saxby, J.; Beckett, F.; Cashman, K.; Rust, A.; Tennant, E. The impact of particle shape on fall velocity: Implications for volcanic ash dispersion modelling. J. Volcanol. Geotherm. Res. 2018, 362, 32–48. [Google Scholar]
- Scollo, S.; Folch, A.; Costa, A. A parametric and comparative study of different tephra fallout models. J. Volcanol. Geotherm. Res. 2008, 176, 199–211. [Google Scholar]
- Osores, S.; Ruiz, J.; Folch, A.; Collini, E. Volcanic ash forecast using ensemble-based data assimilation: An ensemble transform Kalman filter coupled with the FALL3D-7.2 model (ETKF-FALL3D version 1.0). Geosci. Model Dev. 2020, 13, 1–22. [Google Scholar]
- Zidikheri, M.J.; Lucas, C.; Potts, R.J. Estimation of optimal dispersion model source parameters using satellite detections of volcanic ash. J. Geophys. Res. Atmos. 2017, 122, 8207–8232. [Google Scholar] [CrossRef]
- Rust, A.C.; Cashman, K.V. Permeability controls on expansion and size distributions of pyroclasts. J. Geophys. Res. Solid Earth 2011, 116, B11202. [Google Scholar]
- Cashman, K.V.; Rust, A.C. Volcanic ash: Generation and spatial variations. In Volcanic Ash: Hazard Observation; Mackie, S., Cashman, K.V., Ricketts, H., Rust, A.C., Watson, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 5–22. [Google Scholar]
- Hobbs, P.V.; Radke, L.F.; Lyons, J.H.; Ferek, R.J.; Coffman, D.J. Airborne measurements of particle and gas emissions from the 1990 volcanic eruptions of Mount Redoubt. J. Geophys. Res. 1991, 96, 18735–18752. [Google Scholar] [CrossRef] [Green Version]
- Johnson, B.; Turnbull, K.; Brown, P.; Burgess, R.; Dorsey, J.; Baran, A.J.; Webster, H.; Haywood, J.; Cotton, R.; Ulanowski, Z.; et al. In situ observations of volcanic ash clouds from the FAAM aircraft during the eruption of Eyjafjallajökull in 2010. J. Geophys. Res. Atmos. 2012, 117, D20. [Google Scholar]
- Eliasson, J.; Watson, I.M. In situ observations of airborne ash from manned aircraft. In Volcanic Ash: Hazard Observation; Mackie, S., Cashman, K.V., Ricketts, H., Rust, A.C., Watson, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 89–98. [Google Scholar]
- Schumann, U.; Weinzierl, B.; Reitebuch, O.; Schlager, H.; Minikin, A.; Forster, C.; Baumann, R.; Sailer, T.; Graf, K.; Mannstein, H.; et al. Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010. Atmos. Chem. Phys. 2011, 11, 2245–2279. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, J.A.; Millington, S.C.; Beckett, F.M.; Swindles, G.T.; Thordarson, T. Big grains go far: Understanding the discrepancy between tephrochronology and satellite infrared measurements of volcanic ash. Atmos. Meas. Tech. 2015, 8, 2069–2091. [Google Scholar]
- Corradini, S.; Montopoli, M.; Guerrieri, L.; Ricci, M.; Scollo, S.; Merucci, L.; Marzano, F.; Pugnaghi, S.; Prestifilippo, M.; Ventress, L.; et al. A multi-sensor approach for volcanic ash cloud retrieval and eruption characterization: The 23 November 2013 Etna lava fountain. Remote Sens. 2016, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Janebo, M.H.; Houghton, B.F.; Thordarson, T.; Bonadonna, C.; Carey, R.J. Total grain-size distribution of four Subplinian–Plinian tephras from Hekla volcano, Iceland: Implications for sedimentation dynamics and eruption source parameters. J. Volcanol. Geotherm. Res. 2018, 357, 25–38. [Google Scholar] [CrossRef]
- Gudnason, J.; Thordarson, T.; Houghton, B.F.; Larsen, G. The opening subplinian phase of the Hekla 1991 eruption: Properties of the tephra fall deposit. Bull. Volcanol. 2017, 79, 34. [Google Scholar] [CrossRef]
- Pioli, L.; Bonadonna, C.; Pistolesi, M. Reliability of total grain-size distribution of tephra deposits. Sci. Rep. 2019, 9, 10006. [Google Scholar]
- Costa, A.; Pioli, L.; Bonadonna, C. Assessing tephra total grain-size distribution: Insights from field data analysis. Earth Planet. Sci. Lett. 2016, 443, 90–107. [Google Scholar]
- Bonadonna, C.; Houghton, B.F. Total grain-size distribution and volume of tephra-fall deposits. Bull. Volcanol. 2005, 67, 441–456. [Google Scholar] [CrossRef]
- Cashman, K.V.; Rust, A.C. Far-travelled ash in past and future eruptions: Combining tephrochronology with volcanic studies. J. Quat. Sci. 2019, 35, 11–22. [Google Scholar]
- Liu, E.J.; Cashman, K.V.; Rust, A.C.; Höskuldsson, A. Contrasting mechanisms of magma fragmentation during coeval magmatic and hydromagmatic activity: The Hverfjall Fires fissure eruption, Iceland. Bull. Volcanol. 2017, 79, 68. [Google Scholar] [CrossRef]
- Stevenson, J.A.; Loughlin, S.C.; Font, A.; Fuller, G.W.; MacLeod, A.; Oliver, I.W.; Jackson, B.; Horwell, C.J.; Thordarson, T.; Dawson, I. UK monitoring and deposition of tephra from the May 2011 eruption of Grímsvötn, Iceland. J. Appl. Volcanol. 2013, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Mueller, S.B.; Kueppers, U.; Huber, M.S.; Hess, K.-U.; Poesges, G.; Ruthensteiner, B.; Dingwell, D.B. Aggregation in particle rich environments: A textural study of examples from volcanic eruptions, meteorite impacts, and fluidized bed processing. Bull. Volcanol. 2018, 80, 32. [Google Scholar] [CrossRef] [Green Version]
- Koyaguchi, T.; Ohno, M. Reconstruction of eruption column dynamics on the basis of grain size of tephra fall deposits: 2. Application to the Pinatubo 1991 eruption. J. Geophys. Res. Solid Earth 2001, 106, 6513–6533. [Google Scholar] [CrossRef]
- Carazzo, G.; Jellinek, A.M. Particle sedimentation and diffusive convection in volcanic ash-clouds. J. Geophys. Res. Solid Earth 2013, 118, 1420–1437. [Google Scholar] [CrossRef]
- Manzella, I.; Bonadonna, C.; Phillips, J.C.; Monnard, H. The role of gravitational instabilities in deposition of volcanic ash. Geology 2015, 43, 211–214. [Google Scholar] [CrossRef] [Green Version]
- Bonadonna, C.; Genco, R.; Gouhier, M.; Pistolesi, M.; Cioni, R.; Alfano, F.; Hoskuldsson, A.; Ripepe, M. Tephra sedimentation during the 2010 Eyjafjallajökull eruption (Iceland) from deposit, radar, and satellite observations. J. Geophys. Res. 2011, 116, B12202. [Google Scholar]
- Crosweller, H.S.; Arora, B.; Brown, S.K.; Cottrell, E.; Deligne, N.I.; Guerrero, N.O.; Hobbs, L.; Kiyosugi, K.; Loughlin, S.C.; Lowndes, J.; et al. Global database on large magnitude explosive volcanic eruptions (LaMEVE). J. Appl. Volcanol. 2012, 1, 4. [Google Scholar]
- Venzke, E. Global Volcanism Program: Volcanoes of the World, v. 4.8.5. Available online: https://volcano.si.edu/gvp_votw.cfm (accessed on 20 April 2020).
- Sparks, R.S.J.; Wilson, L.; Sigurdsson, H. The pyroclastic deposits of the 1875 eruption of Askja, Iceland. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1981, 299, 241–273. [Google Scholar]
- Moreland, W.M. Explosive Activity in Flood Lava Eruptions: A Case Study of the 10th Century Eldgja Eruption, Iceland. Ph.D. Thesis, University of Iceland, Reykjavík, Iceland, 2017. [Google Scholar]
- Jude-Eton, T.C. Eruption Dynamics within an Emergent Subglacial Setting: A Case Study of the 2004 Eruption at Grímsvötn Volcano, Iceland. Ph.D. Thesis, University of Edinburgh, Edinburgh, UK, 2013. [Google Scholar]
- Olsson, J.; Stipp, S.L.S.; Dalby, K.N.; Gislason, S.R. Rapid release of metal salts and nutrients from the 2011 Grímsvötn, Iceland volcanic ash. Geochim. Cosmochim. Acta 2013, 123, 134–149. [Google Scholar]
- Gjerløw, E.; Höskuldsson, A.; Pedersen, R.-B. The 1732 Surtseyan eruption of Eggøya, Jan Mayen, North Atlantic: Deposits, distribution, chemistry and chronology. Bull. Volcanol. 2015, 77, 14. [Google Scholar] [CrossRef]
- Magnúsdóttir, A.Ö. Characteristics of the CE 1226 Medieval Tephra Layer from the Reykjanes Volcanic System. Master’s Thesis, University of Iceland, Reykjavík, Iceland, 2015. [Google Scholar]
- Varekamp, J.C.; Luhr, J.F.; Prestegaard, K.L. The 1982 eruptions of El Chichón Volcano (Chiapas, Mexico): Character of the eruptions, ash-fall deposits, and gasphase. J. Volcanol. Geotherm. Res. 1984, 23, 39–68. [Google Scholar] [CrossRef]
- Pedrazzi, D.; Suñe-Puchol, I.; Aguirre-Díaz, G.J.; Costa, A.; Smith, V.C.; Poret, M.; Dávila-Harris, P.; Miggins, D.P.; Hernández, W.; Gutierrez, E. The Ilopango Tierra Blanca Joven (TBJ) eruption, El Salvador: Volcano-stratigraphy and physical characterization of the major Holocene event of Central America. J. Volcanol. Geotherm. Res. 2019, 377, 81–102. [Google Scholar] [CrossRef]
- Fisher, R.V. Maximum size, median diameter, sorting of tephra. J. Geophys. Res. 1964, 69, 341–355. [Google Scholar] [CrossRef]
- Mohr, E.C.J.; Van Baren, F.A. Tropical Soils: A Critical Study of Soil Genesis as Related to Climate, Rock and Vegetation; W. Van Hoeve: The Hague, The Netherlands, 1954. [Google Scholar]
- Brazier, S.; Davis, A.N.; Sigurdsson, H.; Sparks, R.S.J. Fall-out and deposition of volcanic ash during the 1979 explosive eruption of the Soufrière of St. Vincent. J. Volcanol. Geotherm. Res. 1982, 14, 335–359. [Google Scholar] [CrossRef]
- Walker, G.P.L. Characteristics of two phreatoplinian ashes, and their water-flushed origin. J. Volcanol. Geotherm. Res. 1981, 9, 395–407. [Google Scholar] [CrossRef]
- Self, S. Large-scale phreatomagmatic silicic volcanism: A case study from New Zealand. J. Volcanol. Geotherm. Res. 1983, 17, 433–469. [Google Scholar] [CrossRef]
- Van Eaton, A.R.; Wilson, C.J.N. The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand. J. Volcanol. Geotherm. Res. 2013, 250, 129–154. [Google Scholar] [CrossRef]
- Hayakawa, Y. Pyroclastic geology of Towada volcano. Bull. Earthq. Res. Inst. Univ. Tokyo 1985, 60, 507–592. [Google Scholar]
- Hayakawa, Y. The Hachinohe ash: An example of an accretionary lapilli fall deposit from Towada Volcano, Japan. Bull. Volcanol. Soc. Jpn. Ser. 2 1983, 28, 25–40. [Google Scholar]
- Janebo, M.H. Historic Explosive Eruptions of Hekla and Askja Volcanoes, Iceland: Eruption Dynamics and Source Parameters. Ph.D. Thesis, University of Hawai’i at Manoa, Honolulu, HI, USA, 2016. [Google Scholar]
- Gudmundsson, M.T.; Larsen, G. Catalogue of Icelandic Volcanoes: Grímsvötn. Available online: http://icelandicvolcanos.is (accessed on 19 April 2020).
- Gudnason, J.; Thordarson, T.; Houghton, B.F.; Larsen, G. The 1845 Hekla eruption: Grain-size characteristics of a tephra layer. J. Volcanol. Geotherm. Res. 2018, 350, 33–46. [Google Scholar] [CrossRef]
- Biass, S.; Scaini, C.; Bonadonna, C.; Folch, A.; Smith, K.; Höskuldsson, A. A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes. Part 1: Hazard assessment. Nat. Hazards Earth Syst. Sci. 2014, 14, 2265–2287. [Google Scholar] [CrossRef] [Green Version]
- Höskuldsson, Á.; Óskarsson, N.; Pedersen, R.; Grönvold, K.; Vogfjörð, K.; Ólafsdóttir, R. The millennium eruption of Hekla in February 2000. Bull. Volcanol. 2007, 70, 169–182. [Google Scholar] [CrossRef]
- Mele, D.; Costa, A.; Dellino, P.; Sulpizio, R.; Dioguardi, F.; Isaia, R.; Macedonio, G. Total grain size distribution of components of fallout deposits and implications for magma fragmentation mechanisms: Examples from Campi Flegrei caldera (Italy). Bull. Volcanol. 2020, 82, 1–12. [Google Scholar] [CrossRef]
- Alfano, F.; Bonadonna, C.; Watt, S.; Connor, C.; Volentik, A.; Pyle, D.M. Reconstruction of total grain size distribution of the climactic phase of a long-lasting eruption: The example of the 2008–2013 Chaitén eruption. Bull. Volcanol. 2016, 78, 46. [Google Scholar] [CrossRef] [Green Version]
- Bonadonna, C.; Cioni, R.; Pistolesi, M.; Elissondo, M.; Baumann, V. Sedimentation of long-lasting wind-affected volcanic plumes: The example of the 2011 rhyolitic Cordón Caulle eruption, Chile. Bull. Volcanol. 2015, 77, 13. [Google Scholar] [CrossRef]
- Rose, W.I.; Self, S.; Murrow, P.J.; Bonadonna, C.; Durant, A.J.; Ernst, G.G.J. Nature and significance of small volume fall deposits at composite volcanoes: Insights from the October 14, 1974 Fuego eruption, Guatemala. Bull. Volcanol. 2008, 70, 1043–1067. [Google Scholar] [CrossRef]
- Volentik, A.C.M. Tephra Transport, Sedimentation and Hazards. Ph.D. Thesis, University of South Florida, Tampa, FL, USA, 2009. [Google Scholar]
- Bonadonna, C.; Phillips, J.C.; Houghton, B.F. Modeling tephra sedimentation from a Ruapehu weak plume eruption. J. Geophys. Res. 2005, 110, B08209. [Google Scholar] [CrossRef] [Green Version]
- Fontijn, K.; Ernst, G.G.J.; Bonadonna, C.; Elburg, M.A.; Mbede, E.; Jacobs, P. The ~4-ka Rungwe Pumice (south-western Tanzania): A wind-still Plinian eruption. Bull. Volcanol. 2011, 73, 1353–1368. [Google Scholar] [CrossRef]
- Carey, S.N.; Sigurdsson, H. Influence of particle aggregation on deposition of distal tephra from the May 18, 1980, eruption of Mount St. Helens volcano. J. Geophys. Res. Solid Earth 1982, 87, 7061–7072. [Google Scholar] [CrossRef]
- Durant, A.J.; Rose, W.I. Sedimentological constraints on hydrometeor-enhanced particle deposition: 1992 Eruptions of Crater Peak, Alaska. J. Volcanol. Geotherm. Res. 2009, 186, 40–59. [Google Scholar] [CrossRef]
- Carey, R.J.; Houghton, B.F.; Thordarson, T. Tephra dispersal and eruption dynamics of wet and dry phases of the 1875 eruption of Askja Volcano, Iceland. Bull. Volcanol. 2010, 72, 259–278. [Google Scholar] [CrossRef]
- Jones, A.; Thomson, D.; Hort, M.; Devenish, B. The U.K. Met Office’s next-generation atmospheric dispersion model, NAME III. In Air Pollution Modeling and Its Application XVII; Springer: Boston, MA, USA, 2007; pp. 580–589. [Google Scholar]
- Devenish, B.J.; Francis, P.N.; Johnson, B.T.; Sparks, R.S.J.; Thomson, D.J. Sensitivity analysis of dispersion modeling of volcanic ash from Eyjafjallajokull in May 2010. J. Geophys. Res. 2012, 117, D00U21. [Google Scholar] [CrossRef]
- Grant, A.L.M.; Dacre, H.F.; Thomson, D.J.; Marenco, F. Horizontal and vertical structure of the Eyjafjallajökull ash cloud over the UK: A comparison of airborne lidar observations and simulations. Atmos. Chem. Phys. 2012, 12, 10145–10159. [Google Scholar] [CrossRef] [Green Version]
- Millington, S.C.; Saunders, R.W.; Francis, P.N.; Webster, H.N. Simulated volcanic ash imagery: A method to compare NAME ash concentration forecasts with SEVIRI imagery for the Eyjafjallajokull eruption in 2010. J. Geophys. Res. 2012, 117, D00U17. [Google Scholar] [CrossRef]
- Harvey, N.J.; Dacre, H.F. Spatial evaluation of volcanic ash forecasts using satellite observations. Atmos. Chem. Phys. 2016, 16, 861–872. [Google Scholar] [CrossRef] [Green Version]
- Maryon, R.H.; Ryall, D.B.; Malcolm, A.L. The NAME 4 dispersion model: Science documentation. In Turbulence and Diffusion Note No 262; Met Office: Exeter, UK, 1999. [Google Scholar]
- Krumbein, W.C. The use of quartile measures in describing and comparing sediments. Am. J. Sci. 1936, 32, 98–111. [Google Scholar] [CrossRef]
- Lawrence, B.N.; Bennett, V.L.; Churchill, J.; Juckes, M.; Kershaw, P.; Pascoe, S.; Pepler, S.; Pritchard, M.; Stephens, A. Storing and manipulating environmental big data with JASMIN. In Proceedings of the 2013 IEEE International Conference on Big Data, Silicon Valley, CA, USA, 6–9 October 2013; pp. 68–75. [Google Scholar]
- Thomson, D.J.; Jones, A.R.; Devenish, B.J.; Hort, M.C.; Webster, H.N.; Muller, E.; Meneguz, E.; Beckett, F.M.; Hugget, L.; Selvaratnam, V. Input. NAME Technical Specification Document B01; Met Office: Exeter, UK, 2018.
- Jones, A. Using NWP data in NAME: A practical guide. In NAME Technical Specification Document A03; Met Office: Exeter, UK, 2018. [Google Scholar]
- Devenish, B.J. Using simple plume models to refine the source mass flux of volcanic eruptions according to atmospheric conditions. J. Volcanol. Geotherm. Res. 2013, 256, 118–127. [Google Scholar] [CrossRef]
- Webster, H.N.; Devenish, B.J.; Mastin, L.G.; Thomson, D.J.; Van Eaton, A.R. Operational modelling of umbrella cloud growth in a Lagrangian volcanic ash transport and dispersion model. Atmosphere. 2020, 11, 200. [Google Scholar] [CrossRef] [Green Version]
- Webster, H.N.; Thomson, D.J.; Johnson, B.T.; Heard, I.P.C.; Turnbull, K.; Marenco, F.; Kristiansen, N.I.; Dorsey, J.; Minikin, A.; Weinzierl, B.; et al. Operational prediction of ash concentrations in the distal volcanic cloud from the 2010 Eyjafjallajökull eruption. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Leadbetter, S.J.; Hort, M.C.; Jones, A.R.; Webster, H.N.; Draxler, R.R. Sensitivity of the modelled deposition of Caesium-137 from the Fukushima Dai-ichi nuclear power plant to the wet deposition parameterisation in NAME. J. Environ. Radioact. 2015, 139, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Houghton, B.F.; Carey, R.J. Physical constraints for effective magma-water interaction along volcanic conduits during silicic explosive eruptions: Comment. Geology 2019, 47, e461. [Google Scholar] [CrossRef]
- Tsunematsu, K.; Bonadonna, C. Grain-size features of two large eruptions from Cotopaxi volcano (Ecuador) and implications for the calculation of the total grain-size distribution. Bull. Volcanol. 2015, 77. [Google Scholar] [CrossRef]
- Fierstein, J.; Nathenson, M. Another look at the calculation of fallout tephra volumes. Bull. Volcanol. 1992, 54, 156–167. [Google Scholar] [CrossRef]
- Pardini, F.; Spanu, A.; De’ Michieli Vitturi, M.; Salvetti, M.V.; Neri, A. Grain size distribution uncertainty quantification in volcanic ash dispersal and deposition from weak plumes. J. Geophys. Res. Solid Earth 2016, 121, 538–557. [Google Scholar] [CrossRef] [Green Version]
- Poret, M.; Costa, A.; Andronico, D.; Scollo, S.; Gouhier, M.; Cristaldi, A. Modeling eruption source parameters by integrating field, ground-based, and satellite-based measurements: The case of the 23 February 2013 Etna paroxysm. J. Geophys. Res. Solid Earth 2018, 123, 5427–5450. [Google Scholar] [CrossRef]
- Dioguardi, F.; Mele, D.; Dellino, P. A new one-equation model of fluid drag for irregularly shaped particles valid over a wide range of Reynolds number. J. Geophys. Res. Solid Earth 2018, 123, 144–156. [Google Scholar]
- Gouhier, M.; Eychenne, J.; Azzaoui, N.; Guillin, A.; Deslandes, M.; Poret, M.; Costa, A.; Husson, P. Low efficiency of large volcanic eruptions in transporting very fine ash into the atmosphere. Sci. Rep. 2019, 9, 1449. [Google Scholar] [CrossRef]
- Scott, W.E.; McGimsey, R.G. Character, mass, distribution, and origin of tephra-fall deposits of the 1989–1990 eruption of Redoubt volcano, south-central Alaska. J. Volcanol. Geotherm. Res. 1994, 62, 251–272. [Google Scholar]
- Engwell, S.; Eychenne, J. Contribution of fine ash to the atmosphere from plumes associated with pyroclastic density currents. In Volcanic Ash: Hazard Observation; Mackie, S., Cashman, K.V., Ricketts, H., Rust, A.C., Watson, M., Eds.; Elsevier: Amsterdam, The Netehrlands, 2016; pp. 67–85. [Google Scholar]
Eruption | Date | VEI | Magnitude | Intensity | Tephra vol/km3 | Composition | PSDs/Md Phi Dist from Vent (km) | Reference |
---|---|---|---|---|---|---|---|---|
Iceland | ||||||||
Askja Unit C | 1875 | 5 | 4.9 | 10.9 | 0.45 | Rhyolite | 2–58 | [36] |
Eldgja | 10th C | 4 | 0.028 | Basalt | 11–43 | [37] | ||
Grímsvötn | 2004 | 3 | 0.0005 | Basalt | 0.5–26 | [38] | ||
Grímsvötn | 2011 | 4 | 4.4 | 0.1 | Basalt | 50–115 | [39] | |
Hverfjall | 2000 BP | 2 | 0.08 | Basalt | 1–20 | [27] | ||
Jan Mayen | 1732 | 4 | 0.4 | Basanite | 4.5–16.5 | [40] | ||
Reykjanes | 1226 | 4 | 4.6 | 0.1 | Basalt | 10–64 | [41] | |
Others | ||||||||
El Chichón Unit A | 1982 | 5 | 5.1 | 11.17 | 0.29 | Trachyandesite | 17–70 | [42] |
Ilopango Unit A | ~1.5 ka BP | 4 ? 1 | 11.3 | 0.65 | Dacite—rhyolite | 15–21 | [43] | |
Kelut | 1919 | 4 | 4.3 | 0.1 | Basaltic andesite–andesite | 2–360 | [44,45] | |
Soufriere St Vincent | 1979 | 3 | Basaltic andesite | 10–36 | [46] | |||
Taupo Hatepe | 130 CE | 6 | 6.7 | 12.1 | 13.5 for both phases | Rhyolite | 10–95 | [47] |
Taupo Rotongaio | 130 CE | 6 | 6.7 | 12.1 | Rhyolite | 7–68 | [47] | |
Taupo Oruanui | 25.4 ka BP | 8 | 8.1 | 11.2 | 430 | Rhyolite | 11–111 | [48,49] |
Towada | 13 ka BP | 6 | 6.7 | 11.34 | 0.29 | Dacite | 15–60 | [50,51] |
Eruption | Date | VEI | Magnitude | Intensity | Tephra vol/km3 | Composition | PSDs/Md Phi Dist from Vent (km) | Reference |
---|---|---|---|---|---|---|---|---|
Iceland | ||||||||
Askja Unit D | 1875 | 5 ? 1 | 1.37 | Rhyolite | 2.5–150 | [36,52] | ||
Eldgja | 10th C | 4 | Basalt | 1–21 | [37] | |||
Eyjafjallajökull | 2010 | 4 | 4 | 8.65 | > 0.1 | Trachyte | 2–56 | [33] |
Grímsvötn | 2011 | 4 | 4.4 | 0.7 | Basalt | 15–70 | [53] | |
Hekla | 1104 | 5 | 5.1 | 1.2 | Dacite | 7–216 | [21] | |
Hekla | 1300 | 4 | 4 | 0.1 | Andesite | 10–212 | [21] | |
Hekla | 1693 | 4 | 4.3 | 0.2 | Andesite | 9–166 | [21] | |
Hekla | 1766 | 4 | 4.3 | 0.2 | Andesite | 6–218 | [21] | |
Hekla | 1845 | 4 | 4.3 | 7.86 | 0.2 | Andesite | 5–90 | [54] |
Hekla | 1991 | 3 | 0.16–0.19 | Basaltic andesite | 5–195 | [22] | ||
Hekla | 2000 | 3 | 0.01/0.001 | Basaltic andesite | [55,56] | |||
Others | ||||||||
Campi Flegrei, Agnano Monte Spina | 4.1 ka BP | 5 | 5.4 | >1.1 | Trachyte | 5–460 | [57] | |
Campi Flegrei, Astroni-6 | 4.2 ka BP | 4 | 4.4 | 0.23 2 | Trachyte | 2–460 | [57] | |
Chaitén | 2008 | 4 | 4.9 | 10.7 | 0.75 | Rhyolite | 3–310 | [58] |
Cordón Caulle | 2011 | 5 | 5 | 1.0 | Dacite | 1–240 | [59] | |
Fuego | 1974 | 4 | 4.4 | 10.75 | 1.2 | Basalt | 8–60 | [60] |
Ilopango Unit B | ~ 1.5 ka | 3 ? 3 | 11.3 | 1.84 | Dacite—rhyolite | 10–33 | [43] | |
Pululagua | 2450 BP | 6 | 6 | 11.3 | 1.1 | Dacite | 5–30 | [61] |
Ruapehu | 1996 | 3 | 0.006 | Andesite | 0.4–177 | [62] | ||
Rungwe | ~ 4 ka BP | 5 | 5 | 11.24 | >= 2.2 | Trachyte | 8–28 | [63] |
Mt St Helens | 1980 | 5 | 4.8 | 11.06 | 1.2 | Dacite | 10–480 | [64] |
Spurr Aug and Sep | 1992 | 4 | 4 | 10.38 | > 0.04 | Andesite | 5–370 | [65] |
Particle Diameter (μm) | Mass Fraction (%) |
---|---|
0.1–0.3 | 0.1 |
0.3–1 | 0.5 |
1–3 | 5.0 |
3–10 | 20.0 |
10–30 | 70.0 |
30–100 | 4.4 |
Parameter | Values |
---|---|
Source location (latitude, longitude) | −19.62, 63.63 |
Summit height (m asl) | 1666 |
Source shape | Cuboid, uniform (top hat) distribution |
No of particles | 15,000/h |
Particle shape | Spherical |
Particle density | 2300 kg m−3 |
Deposition | Dry deposition—Yes; Wet deposition—Yes, bulk scheme. Scavenging parameters as recommended in Thomson et al. [75] (Table 1) |
Met data | Global configuration of the Unified Model, ~25 km horizontal resolution (mid-latitudes) and 3 hourly temporal resolution [76] |
Rotongaio | Oruanui | Grímsvötn 2004 | Eldgja | Hekla 1991 | Eyja | EyjaG | ||
---|---|---|---|---|---|---|---|---|
Air 6 May 2010 12:00 | FB | −0.412 | −0.228 | −0.584 | −0.449 | −0.743 | −0.218 | −0.318 |
PCC | 0.973 | 0.992 | 0.947 | 0.965 | 0.916 | 0.992 | 0.983 | |
FoM | 83.17 | 89.47 | 71.36 | 71.36 | 63.32 | 90.25 | 85.93 | |
KSP | 9.0 | 9.4 | 13.9 | 22.9 | 21.0 | 4.6 | 7.4 | |
Air 8 May 2010 00:00 | FB | −0.807 | −0.464 | −1.165 | −1.270 | −1.522 | −0.325 | −0.636 |
PCC | 0.987 | 0.995 | 0.956 | 0.905 | 0.846 | 0.990 | 0.991 | |
FoM | 80.18 | 89.82 | 68.79 | 58.41 | 38.68 | 89.94 | 85.32 | |
KSP | 13.2 | 8.2 | 18.0 | 19.7 | 23.8 | 5.6 | 10.4 | |
Deposit 4–12 May 2010 | FB | 0.265 | 0.201 | 0.336 | 0.361 | 0.398 | 0.068 | 0.213 |
PCC | 0.599 | 0.686 | 0.569 | 0.634 | 0.542 | 0.671 | 0.642 | |
FoM | 64.62 | 82.04 | 47.17 | 52.40 | 35.97 | 81.20 | 72.17 | |
KSP | 18.9 | 9.4 | 28.9 | 30.4 | 38.5 | 12.9 | 16.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osman, S.; Beckett, F.; Rust, A.; Snee, E. Sensitivity of Volcanic Ash Dispersion Modelling to Input Grain Size Distribution Based on Hydromagmatic and Magmatic Deposits. Atmosphere 2020, 11, 567. https://doi.org/10.3390/atmos11060567
Osman S, Beckett F, Rust A, Snee E. Sensitivity of Volcanic Ash Dispersion Modelling to Input Grain Size Distribution Based on Hydromagmatic and Magmatic Deposits. Atmosphere. 2020; 11(6):567. https://doi.org/10.3390/atmos11060567
Chicago/Turabian StyleOsman, Sara, Frances Beckett, Alison Rust, and Eveanjelene Snee. 2020. "Sensitivity of Volcanic Ash Dispersion Modelling to Input Grain Size Distribution Based on Hydromagmatic and Magmatic Deposits" Atmosphere 11, no. 6: 567. https://doi.org/10.3390/atmos11060567
APA StyleOsman, S., Beckett, F., Rust, A., & Snee, E. (2020). Sensitivity of Volcanic Ash Dispersion Modelling to Input Grain Size Distribution Based on Hydromagmatic and Magmatic Deposits. Atmosphere, 11(6), 567. https://doi.org/10.3390/atmos11060567