WRF-Chem Simulation of Winter Visibility in Jiangsu, China, and the Application of a Neural Network Algorithm
Abstract
:1. Introduction
2. Experimental Design, Data and Method
2.1. WRF-Chem Numerical Experiment Design
2.2. Visibility Inversion Scheme
2.3. Visibility Correction Scheme
- (1)
- Layer: it is the core component of neural network. It is a data processing module that extracts representation from input data. Thus, simple layers are linked to realize progressive data distillation.
- (2)
- Input data and corresponding targets: in this paper, the input training data are 2-m humidity, 2-m air temperature, 10-m meridional and zonal wind speed, sulfate, nitrate, ammonia, OM, black carbon, PM (PM2.5–10), and aerosol factors in the winter of 2013 simulated by WRF-Chem. The target data are the visibility diurnal series in the Yangtze River Delta in winter of 2013.
- (3)
- Loss function: it is used to measure the performance of the neural network on training data to ensure the network progresses correctly. In this paper, the mean square error between the prediction and observation data are used as the loss function.
- (4)
- Optimizer: it is a mechanism for updating the network based on training data and loss function. The smaller the loss function value, the better the performance of the neural network model.
2.4. Error Analysis Method
2.5. Observation Data
3. Simulation Result Analysis
3.1. Simulation of Meteorological Elements in Jiangsu Province
3.2. WRF-Chem Simulation of Air Pollutants in Jiangsu Province
3.3. Test for Modified Visibility Based on the Neural Network Scheme
4. Conclusions and Discussions
Author Contributions
Funding
Conflicts of Interest
References
- Guo, Y.; Li, S.; Zhou, Y.; Chen, L.; Chen, S.; Yao, T.; Wu, S. The effect of air pollution on human physiological function in China: A longitudinal study. Lancet 2015, S31, 386. [Google Scholar] [CrossRef]
- Zanobetti, A.; Schwartz, J. The Effect of Fine and Coarse Particulate Air Pollution on Mortality: A National Analysis. Environ. Health Perspect. 2009, 117, 898–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, A.; Zhong, L.; Xu, Y.; Wang, H.; Dang, L. Tourists’ Perception of Haze Pollution and the Potential Impacts on Travel: Reshaping the Features of Tourism Seasonality in Beijing, China. Sustainability 2015, 7, 2397–2414. [Google Scholar] [CrossRef] [Green Version]
- Stevens, C.J.; Dise, N.B.; Mountford, J.O.; Gowing, D.J. Impact of nitrogen deposition on the species richness of grasslands. Science 2004, 303, 1876–1879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.H.; Li, Q.; Zhang, R.N. Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013. Sci. China Earth Sci. 2014, 57, 26–35. [Google Scholar]
- Chen, H.P.; Wang, H.J. Haze days in North China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012. J. Geophys. Res. Atmos. 2015, 120, 5895–5909. [Google Scholar] [CrossRef]
- Wang, H.J.; Chen, H.P.; Liu, J.P. Arctic sea ice decline intensified haze pollution in eastern China. Atmos. Oceanic Sci. Lett. 2015, 8, 1–9. [Google Scholar]
- Li, S.L.; Han, Z.; Chen, H.P. A comparison of the effects of interannual Arctic sea ice loss and ENSO on winter haze days: Observational analyses and AGCM simulations. J. Meteorol. Res. 2017, 31, 820–833. [Google Scholar] [CrossRef]
- Liu, D.; Wei, J.; Kang, Z.; Yan, W.; Cao, L.; Chen, H. Urbanization and Industrialization Effects on Haze in China: Take Jinagsu for Example. In Proceedings of the 19th EGU General Assembly, EGU2017, Vienna, Austria, 23–28 April 2017; 2017; p. 18493. [Google Scholar]
- Gao, X.; Xu, Y.; Zhao, Z. Jeremy Impacts of horizontal resolution and topography on the numerical simulation of East Asian precipitation (in Chinese). Chin. J. Atmos. Sci. 2006, 30, 185–192. [Google Scholar]
- Yu, E.T.; Sun, J.Q.; Chen, H.P.; Xiang, W. Evaluation of a high-resolution historical simulation over China: Climatology and extremes. Clim. Dyn. 2015, 45, 2013–2031. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.J.; Hong, Y. Comparison of satellite-estimated and model-forecasted rainfall data during a deadly debris-flow event in Zhouqu, Northwest China. Atmos. Ocean. Sci. Lett. 2016, 9, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Lv, Z.F.; Li, Y.; Wang, L.; Cheng, S. A WRF-Chem model study of the impact of VOCs emission of a huge petro-chemical industrial zone on the summertime ozone in Beijing, China. Atmos. Environ. 2017, 175, 44–53. [Google Scholar] [CrossRef]
- Zhou, G.; Xu, J.; Xie, Y.; Chang, L.; Gao, W.; Gu, Y. Numerical air quality forecasting over eastern China: An operational application of WRF-Chem. Atmos. Environ. 2017, 153, 94–108. [Google Scholar] [CrossRef]
- Song, H.; Wang, K.; Zhang, Y.; Hong, C.; Zhou, S. Simulation and evaluation of dust emissions with WRF-Chem (v3.7.1) and its relationship to the changing climate over East Asia from 1980 to 2015. Atmos. Environ. 2017, 167, 511–522. [Google Scholar] [CrossRef]
- Peng, H.; Liu, D.; Zhou, B.; Su, Y.; Wu, J.; Shen, H. Boundary-Layer Characteristics of Persistent Regional Haze Events and Heavy Haze Days in Eastern China. Adv. Meteorol. 2016, 2016, 1–23. [Google Scholar]
- Dai, Z.; Liu, D.; Yu, K.; Cao, L.; Jiang, Y. Meteorological Variables and Synoptic Patterns Associated with Air Pollutions in Eastern China during 2013–2018. Int. J. Environ. Res. Public Health 2020, 17, 2528. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.H.; Liu, D.Y.; Yan, W.L.; Wang, H.B.; Zhu, C.Y.; Zhu, Y.Y.; Zu, F. Dense fog burst reinforcement over Eastern China: A review. Atmos. Res. 2019, 230, 104639. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Wang, B.; Zhu, Q.Z.; Luo, R.; Wu, C.Q.; Jia, R. Dominant synoptic patterns and their relationships with PM2.5 pollution in winter over the Beijing-Tianjin-Hebei and Yangtze River Delta Regions. J. Meteor. Res. 2019, 33, 765–776. [Google Scholar] [CrossRef]
- Relvas, H.; Miranda, A.I. An urban air quality modeling system to support decision-making: Design and implementation. Air. Qual. Atmos. Health 2018, 11, 815–824. [Google Scholar] [CrossRef]
- Claudio, C.; Giovanna, F.; Enrico, P.; Marialuisa, V. Neuro-fuzzy and neural network systems for air quality control. Atmos. Environ. 2009, 43, 4811–4821. [Google Scholar]
- Grell, G.A.; Peckham, S.E.; Schmitz, R. Fully coupled “online” chemistry within the WRF model. Atmospheric Environment. 2005, 2005, 6957–6975. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol. Climatol. 2004, 43, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-H.; Sun, W.-Y. A One-dimensional Time Dependent Cloud Model. J. Meteorol. Soc. Japan. Ser. II. 2002, 80, 99–118. [Google Scholar] [CrossRef] [Green Version]
- Baek, S. A revised radiation package of G-packed McICA and two-stream approximation: Performance evaluation in a global weather forecasting model. J. Adv. Modeling Earth Syst. 2017, 9, 3. [Google Scholar] [CrossRef]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Dudhia, J. Coupling an advanced land surface hydrology model with the Penn State–NCARMM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Jose, R.S.; Perez, J.L.; Balzarini, A.; Baro, R.; Curci, G.; Forkel, R. Sensitivity of feedback effects in CBMZ/MOSAIC chemical mechanism. Atmos. Environ. 2015, 115, 646–656. [Google Scholar] [CrossRef] [Green Version]
- Fast, J.D.; Gustafson, J.; Zaveri, R.C. Evolution of ozone, particulates, and aerosol direct forcing in an urban area using a new fully-coupled meteorology, chemistry, and aerosol model. J. Geophys. Res. 2006, 2006, D21305. [Google Scholar] [CrossRef]
- Chapman, E.C.; Gustafson, W.I.; Easter, R.C. Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investgating the radiative impact of elevated point source. Atmos. Chem. Phys. 2009, 9, 945–964. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wen, X.Y.; Jang, C.J. Simulating chemistry–aerosol–cloud–radiation–climate feedbacks over the continental U.S. using the online-coupled Weather Research Forecasting Model with chemistry (WRF/Chem). Atmos. Environ. 2010, 44, 3568–3582. [Google Scholar] [CrossRef]
- Zhang, Q.; Streets, D.G.; Carmichael, G.R.; He, K.B.; Huo, H.; Kannari, A.; Klimont, Z.; Park, I.S.; Reddy, S.; Fu, J.S.; et al. Asian emissions in 2006 for the NASA INTEXB mission. Atmos. Chem. Phys. 2009, 9, 5131–5153. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Liao, H.; Mao, Y.H.; David, A.R. Source sector and region contributions to concentration and direct radiative forcing of black carbon in China. Atmos. Environ. 2015, 124, 351–366. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Streets, D.G.; He, K.B.; Cheng, Y.F.; Emmons, L.K.; Huo, H.; Kang, S.C.; Lu, Z.; Shao, M.; et al. Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms. Atmos. Chem. Phys. 2014, 14, 5617–5638. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Huo, H.; Zhang, Q.; Yao, Z.L.; Wang, X.T.; Yang, X.F.; Liu, X.; He, K.B. High-resolution mapping of vehicle emissions in China in 2008. Atmos. Chem. Phys. 2014, 14, 9787–9805. [Google Scholar] [CrossRef] [Green Version]
- Sisler, J.F.; Malm, W.C. Interpretation of trends of PM2.5 and reconstructed visibility from the IMPROVE network. J. Air Waste Manag. Assoc. 2000, 50, 775–789. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.; Bachmann, J.D.; Wierman, S.S.G.; Chow, J.C.; Bachmann, J.D.; Wierman, S.S.G.; Mathai, C.V.; Malm, W.C.; &White, W.H. Vsibility: Science and regulation. J. Air Waste Manag. Assoc. 2002, 52, 973–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitchford, M.; Main, W.; Schichtel, B. Revised algorithm for estimating light extinction from IMPROVE particle speciation data. J. Air Waste Manag. Assoc. 2007, 57, 1326–1336. [Google Scholar] [CrossRef]
- Qiu, Y.; Ma, Z.; Li, K. A modeling study of the peroxyacetyl nitrate (PAN) during a wintertime haze event in Beijing, China. Sci. Total Environ. 2019, 650, 1944–1953. [Google Scholar] [CrossRef]
- Zhang, Z.; Gong, D.; Mao, R.; Kim S., J.; Xu, J.; Zhao, X. Cause and predictability for the severe haze pollution in downtown Beijing in November–December 2015. Sci. Total Environ. 2017, 592, 627–638. [Google Scholar] [CrossRef]
- Chollet, F. Deep Learning with Python; Manning Publications: Westampton, NJ, USA, 2018. [Google Scholar]
- Boylan, J.W.; Russell, A.G. PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmos. Environ. 2006, 40, 4946–4959. [Google Scholar] [CrossRef]
Weather Element | R | RMSE | MFE | MFB |
---|---|---|---|---|
T2(°C) | 0.95 | 0.97 | 0.04 | 0.11 |
RH2(%) | 0.90 | 5.95 | −0.02 | 0.04 |
WS10(m/s) | 0.43 | 0.75 | −0.02 | 0.19 |
Visibility(km) | 0.76 | 3.70 | −0.32 | 0.33 |
Weather Element | City | R | RMSE | MFE | MFB |
---|---|---|---|---|---|
T2(°C) | XZ | 0.90 | 1.51 | −0.22 | 0.45 |
YC | 0.91 | 1.38 | 0.24 | 0.40 | |
NJ | 0.90 | 1.36 | −0.16 | 0.14 | |
SZ | 0.87 | 1.30 | 0.014 | 0.10 | |
RH2(%) | XZ | 0.78 | 10.50 | −0.06 | 0.10 |
YC | 0.84 | 11.26 | −0.08 | 0.09 | |
NJ | 0.83 | 7.88 | −0.01 | 0.07 | |
SZ | 0.78 | 9.25 | −0.04 | 0.07 | |
WS10(m/s) | XZ | 0.36 | 1.01 | −0.02 | 0.34 |
YC | 0.44 | 1.07 | −0.08 | 0.27 | |
NJ | 0.38 | 1.07 | −0.08 | 0.25 | |
SZ | 0.28 | 1.14 | 0.00 | 0.26 | |
Visibility (VIS, km) | XZ | 0.59 | 3.16 | −0.03 | 0.26 |
YC | 0.53 | 6.52 | 0.16 | 0.33 | |
NJ | 0.54 | 3.26 | −0.24 | 0.34 | |
SZ | 0.48 | 4.49 | −0.30 | 0.42 |
Scheme | R | RMSE | MFE | MFB |
---|---|---|---|---|
IMPROVE | 0.17 | 2.62 | −0.26 | 0.33 |
Neural Network | 0.42 | 1.76 | −0.05 | 0.12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zong, P.; Zhu, Y.; Wang, H.; Liu, D. WRF-Chem Simulation of Winter Visibility in Jiangsu, China, and the Application of a Neural Network Algorithm. Atmosphere 2020, 11, 520. https://doi.org/10.3390/atmos11050520
Zong P, Zhu Y, Wang H, Liu D. WRF-Chem Simulation of Winter Visibility in Jiangsu, China, and the Application of a Neural Network Algorithm. Atmosphere. 2020; 11(5):520. https://doi.org/10.3390/atmos11050520
Chicago/Turabian StyleZong, Peishu, Yali Zhu, Huijun Wang, and Duanyang Liu. 2020. "WRF-Chem Simulation of Winter Visibility in Jiangsu, China, and the Application of a Neural Network Algorithm" Atmosphere 11, no. 5: 520. https://doi.org/10.3390/atmos11050520
APA StyleZong, P., Zhu, Y., Wang, H., & Liu, D. (2020). WRF-Chem Simulation of Winter Visibility in Jiangsu, China, and the Application of a Neural Network Algorithm. Atmosphere, 11(5), 520. https://doi.org/10.3390/atmos11050520