Assessment of Air Quality in School Environments in Hanoi, Vietnam: A Focus on Mass-Size Distribution and Elemental Composition of Indoor-Outdoor Ultrafine/Fine/Coarse Particles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites and School Characteristics
2.2. Measurement Strategy
2.3. Aerosol Sampling, Morphology, and Chemical Analysis
2.4. Data Quality Assurance and Validation
2.5. Emission Source Analysis
3. Results and Discussion
3.1. Indoor, Outdoor Comfort Parameters, and CO, CO2 Concentrations
3.2. Indoor and Outdoor Mass Concentrations of Size-Resolved Airborne Particles
3.3. Particle Mass-Size Distribution
3.4. Morphology and Elemental Analysis
3.4.1. Morphology and Elemental Concentration of Ultrafine, Fine, and Coarse Airborne Particles
3.4.2. Elemental Distribution of Ultrafine, Fine and Coarse Particles
3.5. Emission Sources of Indoor and Outdoor Airborne Particles
3.5.1. Indoor to Outdoor Ratio of Elements in Size-Resolved Airborne Particles
3.5.2. Enrichment Factors and Correlation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tran, D.T.; Alleman, L.Y.; Coddeville, P.; Galloo, J.C. Indoor-outdoor behavior and sources of size-resolved airborne particles in French classrooms. Build. Environ. 2014, 81, 183–191. [Google Scholar] [CrossRef]
- Pallarés, S.; Gómez, E.T.; Martínez, A.; Jordán, M.M. The relationship between indoor and outdoor levels of PM10 and its chemical composition at schools in a coastal region in Spain. Heliyon 2019, 5, e02270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, D.T.; Alleman, L.Y.; Coddeville, P.; Galloo, J.C. Elemental characterization and source identification of size resolved atmospheric particles in French classrooms. Atmos. Environ. 2012, 54, 250–259. [Google Scholar] [CrossRef]
- Tofful, L.; Perrino, C. Chemical Composition of Indoor and Outdoor PM2.5 in Three Schools in the City of Rome. Atmosphere 2015, 6, 1422–1443. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Health Aspects of Air Pollution Results from the WHO Project: Systematic Review of Health Aspects of Air Pollution in Europe; WHO: Copenhagen, Denmark, 2004; pp. 10–18. [Google Scholar]
- Rinaldi, M.; Decesari, S.; Finessi, E.; Giulianelli, L.; Carbone, C.; Fuzzi, S.; O’Dowd, C.D.; Ceburnis, D.; Facchini, M.C. Primary and Secondary Organic Marine Aerosol and Oceanic Biological Activity: Recent Results and New Perspectives for Future Studies. Mar. Aerosol Cloud Clim. Interact. 2010, 310682. [Google Scholar] [CrossRef]
- Okita, T. Formation of Aerosols in the Atmosphere. Phys. Scripta 1988, 31, 245–251. [Google Scholar] [CrossRef]
- Rodríguez- Camacho, S.; de la Rosa, J.; Sánchez de la Campa, A.M.; Alastuey, A.; Querol, X.; González-Castanedo, Y.; Garcia-Orellana, I.; Nava, S. Ultrafine particle and fine trace metal (As, Cd, Cu, Pb and Zn) pollution episodes induced by industrial emissions in Huelva, SW Spain. Atmos. Environ. 2012, 61, 507–517. [Google Scholar] [CrossRef] [Green Version]
- Gugamsetty, B.; Wei, H.; Liu, C.-N.; Awasthi, A.; Hsu, S.-C.; Tsai, C.-J.; Roam, G.-D.; Wu, Y.-C.; Chen, C.-F. Source Characterization and Apportionment of PM10, PM2.5 and PM0.1 by Using Positive Matrix Factorization. Aerosol Air Qual. Res. 2012, 12, 476–491. [Google Scholar] [CrossRef]
- Frampton, M.W.; Ghio, A.J.; Samet, J.M.; Carson, J.L.; Carter, J.D.; Devlin, R.B. Effects of aqueous extracts of PM10 filters from the Utah valley on human airway epithelial cells. Am. J. Physiol. 1999, 277, 960–967. [Google Scholar] [CrossRef]
- Pope, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [Green Version]
- Mbengue, S.; Alleman, L.Y.; Flament, P. Size-distributed metallic elements in submicronic and ultrafine atmospheric particles from urban and industrial areas in northern France. Atmos. Res. 2014, 135, 35–47. [Google Scholar] [CrossRef]
- Mbengue, S.; Alleman, L.Y.; Flament, P. Metal-bearing fine particle sources in a coastal industrialized environment. Atmos. Res. 2017, 183, 202–211. [Google Scholar] [CrossRef]
- Rivas, I.; Viana, M.; Moreno, T.; Pandolfi, M.; Amato, F.; Reche, C.; Bouso, L.; Àlvarez-Pedrerol, M.; Alastuey, A.; Sunyer, J.; et al. Child exposure to indoor and outdoor air pollutants in schools in Barcelona, Spain. Environ. Int. 2014, 69, 200–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, M.; Slezakova, K.; Delerue-Matos, C.; Pereira, M.C.; Morais, S. Assessment of air quality in preschool environments (3–5 years old children) with emphasis on elemental composition of PM10 and PM2.5. Environ. Pollut. 2016, 214, 430–439. [Google Scholar] [CrossRef]
- Ruggieri, S.; Longo, V.; Perrino, C.; Canepari, S.; Drago, G.; L’Abbate, L.; Balzan, M.; Cuttitta, G.; Scaccianoce, G.; Minardi, R.; et al. Indoor Air Quality in Schools of a Highly Polluted South Mediterranean Area. Indoor Air 2019, 29, 276–290. [Google Scholar] [CrossRef]
- Viana, M.; Rivas, I.; Querol, X.; Alastuey, A.; Sunyer, J.; Alvarez-Pedrerol, M.; Bouso, L.; Sioutas, C. Indoor/outdoor relationships of quasi-ultrafine, accumulation and coarse mode particles in school environments in Barcelona: Chemical composition and Sources. Atmos. Chem. Phys. 2013, 13, 32849–32883. [Google Scholar] [CrossRef] [Green Version]
- Hussein, T.; Alameer, A.; Jaghbeir, O.; Albeitshaweesh, K.; Malkawi, M.; Boor, B.E.; Koivisto, A.J.; Löndahl, J.; Alrifai, O.; Al-Hunaiti, A. Indoor Particle Concentrations, Size Distributions, and Exposures in Middle Eastern Microenvironments. Atmosphere 2020, 11, 41. [Google Scholar] [CrossRef] [Green Version]
- Tran, D.T.; Alleman, L.Y.; Coddeville, P.; Galloo, J.C. Indoor particle dynamics in schools: Determination of air exchange rate, size-resolved particle deposition rate and penetration factor in real-life conditions. Indoor Built Environ. 2015, 26, 1335–1350. [Google Scholar] [CrossRef]
- Lai, A.C.K. Particle deposition indoors: A review. Indoor Air 2002, 12, 211–214. [Google Scholar] [CrossRef]
- Nazaroff, W.W. Indoor particle dynamics. Indoor Air 2004, 14, 175–183. [Google Scholar] [CrossRef]
- Thatcher, T.L.; Layton, D.W. Deposition, resuspension and penetration of particles within a residence. Atmos. Environ. 1995, 29, 1487–1497. [Google Scholar] [CrossRef]
- Babich, F.; Demanega, I.; Avella, F.; Belleri, A. Low Polluting Building Materials and Ventilation for Good Air Quality in Residential Buildings: A Cost–Benefit Study. Atmosphere 2020, 11, 102. [Google Scholar] [CrossRef] [Green Version]
- Wolkoff, P.; Wilkins, C.K.; Clausen, P.A.; Nielsen, G.D. Organic compounds in office environments: Sensory irritation, odor, measurements and the role of reactive chemistry. Indoor Air 2006, 16, 7–19. [Google Scholar] [CrossRef]
- Molnár, P.; Bellander, T.; Sällsten, G.; Bomand, J. Indoor and outdoor concentrations of PM2.5 trace elements at homes, preschools and schools in Stockholm, Sweden. J. Environ. Monit. 2007, 9, 348–357. [Google Scholar] [CrossRef]
- Guo, H.; Morawska, L.; He, C.; Gilbert, D. Impact of ventilation scenario on air exchange rates and on indoor particle number concentrations in an air conditioned classroom. Atmos. Environ. 2008, 42, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Fromme, H.; Diemer, J.; Dietrich, S.; Cyrys, J.; Heinrich, J.; Lang, W.; Kiranoglu, M.; Twardella, D. Chemical and morphological properties of particulate matter (PM10, PM2.5) in school classrooms and outdoor air. Atmos. Environ. 2008, 42, 597–660. [Google Scholar] [CrossRef]
- Tran, T.T.; Huynh, H.V.; Nguyen, T.K.O. Traffic emission inventory for estimation of air quality and climate co-benefits of faster vehicle technology intrusion in Hanoi, Vietnam. Carbon Manag. 2015, 6, 117–128. [Google Scholar] [CrossRef]
- Vo, T.Q.T.; Nguyen, T.K.O. Roadside BTEX and other gaseous air pollutants in relation to emission sources. Atmos. Environ. 2007, 41, 7685–7697. [Google Scholar]
- Lamaison, L.; Alleman, L.Y.; Robache, A.; Galloo, J.C. Quantification of trace metalloids and metals in airborne particles applying dynamic reaction cell inductively coupled plasma mass spectrometry. Appl. Spectrosc. 2009, 63, 87–91. [Google Scholar] [CrossRef]
- McLennan, S.M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst. 2001, 2, 1021. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Indoor Air Quality: Selected Pollutants; WHO: Copenhagen, Denmark, 2010; pp. 86–96. [Google Scholar]
- ANSI/ASHRAE. Standard: 62.1–2013. In Ventilation for Acceptable Indoor Air Quality; American Society of Heating Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2013; pp. 38–40. [Google Scholar]
- Peng, Z.; Deng, W.; Tenorio, R. Investigation of Indoor Air Quality and the Identification of Influential Factors at Primary Schools in the North of China. Sustainability 2017, 9, 1180. [Google Scholar] [CrossRef]
- Mainka, A.; Zajusz-Zubek, E. Indoor Air Quality in Urban and Rural Preschools in Upper Silesia, Poland: Particulate Matter and Carbon Dioxide. Int. J. Environ. Res. Publ. Health. 2015, 12, 7697–7711. [Google Scholar] [CrossRef] [Green Version]
- US EPA. Real-Time Network. Available online: https://cfpub.epa.gov/airnow/index.cfm?action=airnow.global_summary#Vietnam$Hanoi (accessed on 27 February 2020).
- Braniš, M.; Řezáčová, P.; Domasová, M. The effect of outdoor air and indoor human activity on mass concentrations of PM10, PM2.5, and PM1 in a classroom. Environ. Res. 2005, 99, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Chithra, V.S.; Madanayak, S.N.S. Source Identification of Indoor Particulate Matter and Health Risk Assessment in School Children. J. Hazard. Toxic Radioact. Waste 2018, 22, 04018002. [Google Scholar] [CrossRef]
- Alves, C.; Nunes, T.; Silva, J.; Duarte, M. Comfort Parameters and Particulate Matter (PM10 and PM2.5) in School Classrooms and Outdoor Air. Aerosol Air Qual. Res. 2013, 13, 1521–1535. [Google Scholar] [CrossRef] [Green Version]
- Rovelli, S.; Cattaneo, A.; Nuzzi, C.P.; Spinazzè, A.; Piazza, S.; Carrer, P.; Cavallo, D.M. Airborne Particulate Matter in School Classrooms of Northern Italy. Int. J. Environ. Res. Publ. Health 2014, 11, 1398–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waheed, A.; Li, X.; Tan, M.; Bao, L.; Liu, J.; Zhang, Y.; Zhang, G.; Li, Y. Size Distribution and Sources of Trace Metals in Ultrafine/Fine/Coarse Airborne Particles in the Atmosphere of Shanghai. Aerosol Sci. Technol. 2011, 45, 163–171. [Google Scholar] [CrossRef]
- Malandrino, M.; Casazza, M.; Abollino, O.; Minero, C.; Maurino, V. Size resolved metal distribution in the PM matter of the city of Turin (Italy). Chemosphere 2016, 147, 477–489. [Google Scholar] [CrossRef]
- Duan, J.; Tan, J.; Wang, S.; Hao, J.; Chai, F. Size distributions and sources of elements in particulate matter at curbside, urban and rural sites in Beijing. J. Environ. Sci. 2012, 24, 87–94. [Google Scholar] [CrossRef]
- Contini, D.; Cesari, D.; Donateo, A.; Chirizzi, D.; Belosi, F. Characterization of PM10 and PM2.5 and their metals content in different typologies of sites in South-Eastern Italy. Atmosphere 2014, 5, 435–453. [Google Scholar] [CrossRef] [Green Version]
- Pérez, N.; Pey, J.; Querol, X.; Alastuey, A.; López, J.M.; Viana, M. Partitioning of major and trace components in PM10-PM2.5-PM1 at an urban site in Southern Europe. Atmos. Environ. 2008, 42, 1677–1691. [Google Scholar] [CrossRef]
- Wang, X.; Bi, X.; Sheng, G.; Fu, J. Hospital indoor PM10/PM2.5 and associated trace elements in Guangzhou, China. Sci. Total Environ. 2006, 366, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Querol, X.; Alastuey, A.; Moreno, T.; Vian, M.M.; Castillo, S.; Pey, J.; Rodríguez, S.; Artiñano, B.; Salvador, P.; Sánchez, M.; et al. Spatial and temporal variations in airborne particulate matter (PM10 and PM2.5) across Spain 1999–2005. Atmos. Environ. 2008, 42, 3964–3979. [Google Scholar] [CrossRef]
- Alleman, L.Y.; Lamaison, L.; Perdrix, E.; Robache, A.; Galloo, J.C. PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone. Atmos. Res. 2010, 96, 612–625. [Google Scholar] [CrossRef]
- Tolocka, M.P.; Lake, D.A.; Johnston, M.V.; Wexler, A.S. Size-resolved fine and ultrafine particle composition in Baltimore, Maryland. J. Geophys. Res. Atmos. 2005, 110, D07S04. [Google Scholar] [CrossRef]
- Sanderson, P.; Delgado Saborit, J.M.; Harrison, R.M. A review of chemical and physical characterisation of atmospheric metallic nanoparticles. Atmos. Environ. 2014, 94, 353–365. [Google Scholar] [CrossRef] [Green Version]
Monitored Preschools | Description |
---|---|
School 1 | Located in a central area of Hanoi, in proximity to a filling station. Surrounded by residential, commercial buildings, and houses. A hundred meters from dense traffic roads. Numerous green plants within the school’s premises. Buildings built in 1990 and renovated in 2005. Laminate Flooring. Naturally ventilated. 32 children present in the surveyed classrooms of 60 m3. |
School 2 | Located in a central area of Hanoi, directly exposed to two streets. Proximity to a ring road (about 100 m). Numerous green plants within the school’s premises. New tables and chairs at the sampling periods. Buildings built in 2012. Flooring tiles. Mechanical ventilation by ceiling fans. 17 children present in the surveyed classroom of 90 m3. |
In absence of children | In presence of children | |||
---|---|---|---|---|
School | S1 | S2 | S1 | S2 |
Indoor | ||||
CO2 (ppm) | 436 ± 33 (391–618) | 427 ± 49 (388–850) | 742 ± 276 (405–1755) | 589 ± 141 (399–1850) |
CO (ppm) | 2.1 ± 1.1 (0.4–8.6) | 0.8 ± 0.7 (0.2–6.7) | 2.7 ± 1.6 (0.4–8.3) | 1.1 ± 0.6 (0.4–5.5) |
Temperature (°C) | 24.4 ± 1.7 (21.7–28.4) | 25.2 ± 13.4 (19.2–31.0) | 24.5 ± 1.8 (29.6–27.8) | 25.6 ± 2.3 (21.0–30.9) |
Relative humidity (%) | 54.4 ± 13.9 (27.8–76.2) | 58.6 ± 8.4 (40.3–77.4) | 53.1 ± 13.8 (26.1–79.8) | 70.7 ± 8.4 (52.2–83.0) |
Outdoor | ||||
CO2 (ppm) | 428 ± 12 (403–575) | 420 ± 20 (360–545) | 443 ± 37 (367–650) | 419 ± 27 (376–682) |
CO (ppm) | 1.2 ± 1.0 (0.2–21.7) | 1.6 ± 0.9 (0.5–10.7) | 1.6 ± 1.2 (0.4–12.1) | 2.2 ± 0.7 (1.2–9.3) |
Temperature (°C) | 23.1 ± 2.0 (20.6–28.4) | 20.0 ± 3.5 (14.4–39.0) | 24.0 ± 2.1 (18.2–28.8) | 23.8–4.5 (17.5–43.0) |
Relative humidity (%) | 57.7 ± 15.8 (29.4–88.0) | 77.9 ± 8.2 (30.4–90.5) | 51.3 ± 14.6 (22.7–79.7) | 70.8 ± 9.5 (26.4–87.1) |
In Absence of Children | In Presence of Children | Recommended Values | ||||
---|---|---|---|---|---|---|
School | S1 | S2 | S1 | S2 | WHO | Vietnam |
Indoor | ||||||
PM0.1 | 1.4 ± 1.2 (0.5–3.2) | 1.1 ± 0.6 (0.6–1.9) | 3.1 ± 1.3 (1.6–4.2) | 2.2 ± 0.6 (1.7–2.7) | ||
PM0.5 | 4.2 ± 2.5 (2.0–7.0) | 2.1 ± 1.5 (1.0–4.3) | 7.9 ± 7.1 (2.6–15.9) | 3.7 ± 1.0 (2.9–4.7) | ||
PM1 | 10.3 ± 12.3 (1.8–28.4) | 3.2 ± 2.1 (1.6–6.4) | 29.3 ± 24.3 (4.7–62.5) | 6.0 ± 1.1 (4.8–6.7) | ||
PM2.5 | 15.7 ± 19.0 (2.3–43.5) | 4.2 ± 3.0 (2.0–8.6) | 49.4 ± 41.0 (8.2–101) | 7.9 ± 1.8 (6.0–9.2) | ||
PM10 | 16.8 ± 20.2 (2.9–46.4) | 5.1 ± 3.6 (2.5–10.5) | 59.7 ± 48.9 (10.1–117) | 10.8 ± 2.0 (8.7–12.7) | 50 | |
PM2.5–10 | 1.7 ± 0.8 (1.0–3.0) | 1.0 ± 0.6 (0.5–1.9) | 10.5 ± 8.2 (2.0–20.8) | 2.8 ± 0.8 (2.0–3.4) | ||
Outdoor | ||||||
PM0.1 | 17.0 ± 3.7 (12.5–20.5) | 11.2 ± 2.2 (8.0–13.0) | 18.5 ± 2.2 (16.3–20.7) | 13.0 ± 2.4 (10.5–15.2) | ||
PM0.5 | 48.2 ± 11.1 (35.2–60.8) | 35.0 ± 9.2 (21.3–41.2) | 35.9 ± 6.7 (28.6–41.8) | 38.9 ± 4.9 (35.5–41.2) | ||
PM1 | 89.4 ± 25.0 (65.6–122) | 101 ± 30.0 (58.2–128) | 73.3 ± 23.9 (41.7–102) | 106 ± 10.1 (98.8–117) | ||
PM2.5 | 133 ± 32.9 (93.8–172) | 147 ± 32.3 (103–178) | 107 ± 40.0 (56.7–155) | 177 ± 20.2 (158–198) | 25 (10) * | 50 (25) * |
PM10 | 164 ± 46.6 (108–211) | 175 ± 36.6 (126–214) | 134.6 ± 52.2 (69.3–198) | 226 ± 20.7 (205–246) | 50 (20) * | 150 (50) * |
PM2.5–10 | 31.3 ± 15.5 (14.1–45.8) | 28.2 ± 7.2 (21.2–35.6) | 27.4 ± 12.4 (12.6–43.5) | 49.6 ± 4.9 (46.1–55.2) |
Cohort | Place | PM0.1 | PM0.5 | PM1 | PM2.5 | PM10 | Reference |
---|---|---|---|---|---|---|---|
Indoor | |||||||
Elementary | Urban, Spain | (65–186) | [2] | ||||
Rural, Spain | 71 (16–169) | [2] | |||||
Industrial, Spain | (21–322) | [2] | |||||
Elementary | Urban, France | 29.6 | 44.0 | 85.2 | [3] | ||
Rural, France | 33.3 | 49.5 | 72.7 | [3] | |||
Industrial, France | 37.7 | 63.5 | 84.8 | [3] | |||
University | Urban, Czech Republic | 13.7 ± 10.9 (3.5–34.4) | 21.9 ± 18.7 (7.6–44.0) | 42.3 ± 43.0 (12.9–76.2) | [37] | ||
Schools | Urban, India | 25.9 ± 13.2 | 43.0 ± 17.0 | 136 ± 50.8 | [38] | ||
Preschools | Urban, China | 32–274 | 33–267 | [34] | |||
Preschool and elementary | Rural, Portugal | 73.7 ± 13.8 | [39] | ||||
Urban, Portugal | 104 ± 63.5 | ||||||
39 schools | Urban, Spain | 37 ± 13 13–84 | [14] | ||||
Preschools | Portugal | 17.6 (11.3–26.6) | 26.8 (15.9–35.7) | [15] | |||
Elementary and secondary | Urban, Italia | 11.1 ± 5.3 | 19.2 ± 7.2 | 33.2 ± 10.0 | 134 ± 67.9 | [40] | |
Secondary | Industrial, Italia | 13.3–47.8 | [16] | ||||
Urban, Italia | 11.2–68 | ||||||
Rural, Italia | 26.0–32.5 | ||||||
Preschools | Urban, Poland | 51.2 ± 25.3 | 70.6 ± 30.7 | 118 ± 42.0 | [35] | ||
Rural, Poland | 78.1 ± 22.0 | 80.9 ± 21.8 | 105 ± 31.7 | [35] | |||
Preschools | Urban, Vietnam | 0.5–4.2 | 1.0–15.9 | 1.6–62.5 | 2.0–101 | 2.5–117 | This study |
Outdoor | |||||||
Elementary | Urban, Spain | 31–100 | [2] | ||||
Rural, Spain | 16–55 | [2] | |||||
Industrial, Spain | 19–73 | [2] | |||||
Elementary | Urban, France | 14.3 | 16.3 | 29.6 | [3] | ||
Rural, France | 13.3 | 18.7 | 35.1 | [3] | |||
Industrial, France | 31.3 | 38.1 | 51.0 | [3] | |||
Universityclassrooms | Urban, Czech Republic | 39.0 ± 38.3 (23.7–61.0) | [37] | ||||
Schools | Urban, Spain | 29 ± 20 10–111 | [14] | ||||
Preschools | Portugal | 19.3 (11.3–36.3) | 30.9 (27.3–36.9) | [15] | |||
Elementary and secondary | Urban, Italia | 46.9 ± 25.4 | [40] | ||||
Secondary | Industrial, Italia | 11.1–32.1 | [16] | ||||
Urban, Italia | 8.5–26.3 | [16] | |||||
Rural, Italia | 10.8 | [16] | |||||
Elementary | Urban, Italia | 5–42 | 5–69 | [4] | |||
Preschools | Urban, Poland | 35.7 ± 15.5 | 36.7 ± 17.0 | [35] | |||
Rural, Poland | 88.3 ± 34.2 | 92.2 ± 32.1 | [35] | ||||
Preschools | Urban, Vietnam | 8.0–20.7 | 21.3–60.8 | 41.7–128 | 56.7–198 | 69.3–246 | This study |
Schools | S1 | S2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
PM0.1 | PM0.5 | PM1 | PM2.5 | PM10 | PM0.1 | PM0.5 | PM1 | PM2.5 | PM10 | |
Mg | 0.18 ± 0.12 (0.04–0.29) | 0.23 ± 0.19 (0.05–0.44) | 0.41 ± 0.5 (0.07–1.3) | 0.36 ± 0.25 (0.09–0.72) | 0.36 ± 0.26 (0.09–0.73) | 0.16 ± 0.15 (0.03–0.32) | 0.1 ± 0.06 (0.05–0.16) | 0.06 ± 0.03 (0.03–0.1) | 0.04 ± 0 (0.03–0.04) | 0.04 ± 0 (0.04–0.04) |
Al | 0.16 ± 0.12 (0.03–0.26) | 0.2 ± 0.17 (0.03–0.38) | 0.38 ± 0.33 (0.07–0.93) | 0.38 ± 0.25 (0.1–0.68) | 0.37 ± 0.24 (0.1–0.65) | 0.17 ± 0.05 (0.12–0.22) | 0.09 ± 0.02 (0.08–0.11) | 0.06 ± 0 (0.06–0.06) | 0.05 ± 0.01 (0.03–0.06) | 0.05 ± 0.01 (0.04–0.06) |
K | 0.15 ± 0.11 (0.03–0.24) | 0.19 ± 0.17 (0.03–0.37) | 0.31 ± 0.24 (0.06–0.68) | 0.39 ± 0.27 (0.09–0.69) | 0.37 ± 0.25 (0.09–0.68) | 0.17 ± 0.06 (0.11–0.23) | 0.09 ± 0.02 (0.07–0.11) | 0.06 ± 0 (0.06–0.06) | 0.05 ± 0.01 (0.04–0.05) | 0.05 ± 0.01 (0.04–0.06) |
Ca | 0.17 ± 0.12 (0.03–0.28) | 0.21 ± 0.18 (0.04–0.4) | 0.38 ± 0.32 (0.07–0.9) | 0.38 ± 0.25 (0.1–0.68) | 0.36 ± 0.23 (0.1–0.61) | 0.16 ± 0.04 (0.13–0.2) | 0.09 ± 0.01 (0.08–0.1) | 0.06 ± 0.01 (0.05–0.07) | 0.05 ± 0.02 (0.03–0.07) | 0.05 ± 0.02 (0.03–0.06) |
Ti | 0.18 ± 0.13 (0.04–0.28) | 0.23 ± 0.2 (0.04–0.44) | 0.38 ± 0.27 (0.08–0.77) | 0.39 ± 0.25 (0.12–0.68) | 0.37 ± 0.23 (0.12–0.61) | 0.19 ± 0.01 (0.18–0.2) | 0.11 ± 0.01 (0.1–0.12) | 0.07 ± 0.03 (0.05–0.1) | 0.06 ± 0.04 (0.03–0.1) | 0.07 ± 0.03 (0.03–0.1) |
Mn | 0.38 ± 0.08 (0.3–0.45) | 0.09 ± 0.14 (0.01–0.25) | 0.26 ± 0.07 (0.18–0.36) | 0.23 ± 0.06 (0.16–0.29) | 0.2 ± 0.04 (0.14–0.23) | 0.63 ± 0.18 (0.43–0.78) | 0.47 ± 0.06 (0.4–0.52) | 0.36 ± 0.17 (0.26–0.56) | 0.76 ± 0.52 (0.3–1.32) | 0.77 ± 0.53 (0.31–1.34) |
Fe | 0.14 ± 0.11 (0.03–0.23) | 0.18 ± 0.16 (0.03–0.35) | 0.31 ± 0.2 (0.06–0.53) | 0.34 ± 0.22 (0.09–0.54) | 0.27 ± 0.16 (0.08–0.43) | 0.16 ± 0.05 (0.12–0.21) | 0.08 ± 0.02 (0.07–0.1) | 0.04 ± 0 (0.04–0.04) | 0.03 ± 0.01 (0.02–0.04) | 0.03 ± 0.01 (0.02–0.04) |
Co | 0.09 ± 0.05 (0.04–0.12) | 0.13 ± 0.12 (0.03–0.27) | 0.33 ± 0.25 (0.06–0.62) | 0.36 ± 0.27 (0.07–0.65) | 0.27 ± 0.18 (0.07–0.46) | 0.14 ± 0.05 (0.1–0.2) | 0.07 ± 0.04 (0.04–0.11) | 0.03 ± 0.01 (0.02–0.04) | 0.02 ± 0 (0.02–0.02) | 0.02 ± 0 (0.02–0.03) |
Ni | 0.13 ± 0.11 (0.02–0.25) | 0.15 ± 0.12 (0.02–0.26) | 0.32 ± 0.22 (0.06–0.61) | 0.37 ± 0.25 (0.1–0.66) | 0.33 ± 0.22 (0.1–0.61) | 0.15 ± 0.03 (0.11–0.17) | 0.06 ± 0 (0.06–0.07) | 0.05 ± 0 (0.05–0.05) | 0.04 ± 0.01 (0.03–0.05) | 0.04 ± 0.01 (0.03–0.05) |
Cu | 0.15 ± 0.12 (0.02–0.26) | 0.18 ± 0.16 (0.03–0.36) | 0.33 ± 0.22 (0.06–0.59) | 0.39 ± 0.27 (0.09–0.67) | 0.36 ± 0.24 (0.09–0.64) | 0.18 ± 0.06 (0.13–0.24) | 0.09 ± 0.02 (0.07–0.11) | 0.05 ± 0 (0.05–0.05) | 0.04 ± 0.01 (0.03–0.05) | 0.04 ± 0.01 (0.03–0.05) |
Zn | 0.14 ± 0.1 (0.02–0.21) | 0.18 ± 0.17 (0.03–0.36) | 0.32 ± 0.22 (0.05–0.61) | 0.39 ± 0.27 (0.09–0.65) | 0.37 ± 0.24 (0.09–0.64) | 0.18 ± 0.07 (0.11–0.25) | 0.09 ± 0.03 (0.07–0.12) | 0.06 ± 0 (0.05–0.06) | 0.04 ± 0.01 (0.04–0.05) | 0.04 ± 0.01 (0.04–0.05) |
As | 0.08 ± 0.09 (0.03–0.19) | 0.06 ± 0.04 (0.02–0.09) | 0.2 ± 0.19 (0.03–0.52) | 0.25 ± 0.17 (0.08–0.48) | 0.24 ± 0.15 (0.07–0.44) | 0.09 ± 0.03 (0.07–0.12) | 0.04 ± 0.01 (0.03–0.05) | 0.02 ± 0 (0.02–0.03) | 0.02 ± 0 (0.02–0.02) | 0.02 ± 0.01 (0.02–0.03) |
Se | 0.17 ± 0.11 (0.10–0.25) | 0.20 ± 0.0.12 (0.10–0.28) | 0.28 ± 0.16 (0.18–0.40) | 0.22 ± 0.10 (0.15–0.28) | 0.20 ± 0.12 (0.13–0.26) | 0.19 ± 0.10 (0.13–0.28) | 0.15 ± 0.08 (0.10–0.22) | 0.10 ± 0.05 (0.06–0.014) | 0.08 ± 0.04 (0.06–0.11) | 0.05 ± 0.03 (0.02–0.08) |
Rb | 0.11 ± 0.09 (0.02–0.18) | 0.17 ± 0.19 (0.02–0.39) | 0.32 ± 0.24 (0.06–0.62) | 0.39 ± 0.27 (0.09–0.65) | 0.35 ± 0.24 (0.09–0.61) | 0.19 ± 0.1 (0.1–0.29) | 0.09 ± 0.03 (0.06–0.12) | 0.04 ± 0 (0.04–0.05) | 0.04 ± 0 (0.03–0.04) | 0.04 ± 0.01 (0.03–0.05) |
Sr | 0.15 ± 0.11 (0.03–0.23) | 0.19 ± 0.17 (0.03–0.38) | 0.33 ± 0.22 (0.06–0.6) | 0.4 ± 0.27 (0.1–0.65) | 0.37 ± 0.24 (0.1–0.64) | 0.18 ± 0.06 (0.12–0.24) | 0.09 ± 0.02 (0.07–0.12) | 0.06 ± 0 (0.06–0.06) | 0.05 ± 0.01 (0.04–0.06) | 0.05 ± 0.01 (0.04–0.06) |
Mo | 0.17 ± 0.19 (0.03–0.38) | 0.1 ± 0.11 (0.03–0.23) | 0.27 ± 0.21 (0.07–0.63) | 0.38 ± 0.34 (0.1–0.95) | 0.32 ± 0.2 (0.09–0.61) | 0.19 ± 0.13 (0.08–0.33) | 0.08 ± 0.04 (0.04–0.12) | 0.05 ± 0.01 (0.05–0.06) | 0.05 ± 0.01 (0.04–0.06) | 0.04 ± 0.01 (0.04–0.05) |
Cd | 0.1 ± 0.1 (0.03–0.21) | 0.16 ± 0.13 (0.02–0.29) | 0.57 ± 0.58 (0.01–1.43) | 0.42 ± 0.31 (0.06–0.73) | 0.39 ± 0.28 (0.06–0.69) | 0.17 ± 0.14 (0.06–0.33) | 0.05 ± 0.02 (0.03–0.07) | 0.03 ± 0.01 (0.01–0.04) | 0.03 ± 0.01 (0.03–0.03) | 0.04 ± 0.01 (0.03–0.04) |
Sn | 0.12 ± 0.06 (0.09–0.19) | 0.08 ± 0.09 (0.02–0.19) | 0.5 ± 0.78 (0.1–1.9) | 0.57 ± 0.68 (0.10–1.23) | 0.44 ± 0.58 (0.1–1.44) | 0.05 ± 0.01 (0.04–0.06) | 0.06 ± 0.01 (0.05–0.08) | 0.04 ± 0.01 (0.03–0.05) | 0.03 ± 0.01 (0.02–0.04) | 0.03 ± 0.01 (0.02–0.03) |
Sb | 0.19 ± 0.18 (0.03–0.38) | 0.26 ± 0.13 (0.19–0.41) | 0.68 ± 0.71 (0.23–1.94) | 0.89 ± 0.41 (0.38–1.39) | 0.29 ± 0.19 (0.05–0.58) | 0.06 ± 0.02 (0.04–0.08) | 0.03 ± 0.01 (0.03–0.05) | 0.04 ± 0.01 (0.02–0.05) | 0.03 ± 0.01 (0.02–0.04) | 0.03 ± 0.01 (0.03–0.04) |
Ba | 0.15 ± 0.11 (0.03–0.23) | 0.19 ± 0.17 (0.03–0.37) | 0.32 ± 0.23 (0.06–0.65) | 0.4 ± 0.28 (0.09–0.68) | 0.37 ± 0.25 (0.09–0.67) | 0.17 ± 0.06 (0.11–0.24) | 0.09 ± 0.03 (0.07–0.12) | 0.06 ± 0 (0.05–0.06) | 0.04 ± 0.01 (0.04–0.05) | 0.05 ± 0.01 (0.04–0.06) |
La | 0.16 ± 0.11 (0.03–0.24) | 0.2 ± 0.19 (0.03–0.4) | 0.32 ± 0.26 (0.07–0.73) | 0.41 ± 0.28 (0.1–0.74) | 0.38 ± 0.26 (0.1–0.73) | 0.16 ± 0.05 (0.12–0.22) | 0.09 ± 0.02 (0.07–0.11) | 0.06 ± 0 (0.05–0.06) | 0.05 ± 0.01 (0.04–0.06) | 0.05 ± 0.01 (0.04–0.07) |
Pb | 0.08 ± 0.06 (0.01–0.12) | 0.15 ± 0.18 (0.01–0.36) | 0.2 ± 0.15 (0.01–0.36) | 0.21 ± 0.15 (0.02–0.37) | 0.21 ± 0.16 (0.03–0.37) | 0.04 ± 0.01 (0.02–0.04) | 0.02 ± 0.02 (0–0.04) | 0.01 ± 0.01 (0.01–0.02) | 0.01 ± 0.01 (0.01–0.02) | 0.01 ± 0 (0–0.01) |
Bi | 0.18 ± 0.26 (0.02–0.48) | 0.18 ± 0.23 (0.04–0.45) | 0.21 ± 0.16 (0.05–0.44) | 0.27 ± 0.21 (0.05–0.55) | 0.27 ± 0.23 (0.06–0.59) | 0.26 ± 0.16 (0.14–0.44) | 0.08 ± 0.02 (0.07–0.1) | 0.04 ± 0.03 (0.02–0.07) | 0.05 ± 0.02 (0.03–0.07) | 0.03 ± 0.01 (0.03–0.04) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, T.D.; Nguyen, P.M.; Nghiem, D.T.; Le, T.H.; Tu, M.B.; Alleman, L.Y.; Nguyen, V.M.; Pham, D.T.; Ha, N.M.; Dang, M.N.; et al. Assessment of Air Quality in School Environments in Hanoi, Vietnam: A Focus on Mass-Size Distribution and Elemental Composition of Indoor-Outdoor Ultrafine/Fine/Coarse Particles. Atmosphere 2020, 11, 519. https://doi.org/10.3390/atmos11050519
Tran TD, Nguyen PM, Nghiem DT, Le TH, Tu MB, Alleman LY, Nguyen VM, Pham DT, Ha NM, Dang MN, et al. Assessment of Air Quality in School Environments in Hanoi, Vietnam: A Focus on Mass-Size Distribution and Elemental Composition of Indoor-Outdoor Ultrafine/Fine/Coarse Particles. Atmosphere. 2020; 11(5):519. https://doi.org/10.3390/atmos11050519
Chicago/Turabian StyleTran, Trinh Dinh, Phuong Minh Nguyen, Dung Trung Nghiem, Tuyen Huu Le, Minh Binh Tu, Laurent Y. Alleman, Viet Minh Nguyen, Dong Thanh Pham, Ngoc Minh Ha, Minh Nhat Dang, and et al. 2020. "Assessment of Air Quality in School Environments in Hanoi, Vietnam: A Focus on Mass-Size Distribution and Elemental Composition of Indoor-Outdoor Ultrafine/Fine/Coarse Particles" Atmosphere 11, no. 5: 519. https://doi.org/10.3390/atmos11050519
APA StyleTran, T. D., Nguyen, P. M., Nghiem, D. T., Le, T. H., Tu, M. B., Alleman, L. Y., Nguyen, V. M., Pham, D. T., Ha, N. M., Dang, M. N., Le, C. V., & Nguyen, N. V. (2020). Assessment of Air Quality in School Environments in Hanoi, Vietnam: A Focus on Mass-Size Distribution and Elemental Composition of Indoor-Outdoor Ultrafine/Fine/Coarse Particles. Atmosphere, 11(5), 519. https://doi.org/10.3390/atmos11050519