Stochastic Resonance Observed in Aerosol Optical Depth Time Series
Abstract
1. Introduction
2. Experiments
3. Results
3.1. Linear and Nonlinear Analysis
3.2. AOD Residence Time Distribution and Modeling
3.3. Stochastic Resonance Modeling
4. Discussion and Conclusions
- (1)
- AOD is made of a wide band spectrum in which a peak characterized by an annual periodicity emerges retaining most of the information. A non-negligible contribution at very high frequency of the order of a few days is also present.
- (2)
- ICA basically decomposes AOD into two main and independent signals (time components), IC1 (peaked at about 1 year) and IC2 (peaked at about 2–3 days). The first extracted signal component IC1 is the most energetic.
- (3)
- The residence time distribution is made of local maxima over an exponential behavior. The two successive peaks are located at about 200 and 600 days.
- (4)
- FNN indicates that there is no convergence of the algorithm up to a dimension equal to 10, showing no high dimensional deterministic system is driving the dynamics.
Author Contributions
Conflicts of Interest
References
- Lolli, S.; Khor, W.Y.; Matjafri, M.Z.; Lim, H.S. Monsoon Season Quantitative Assessment of Biomass Burning Clear-Sky Aerosol Radiative Effect at Surface by Ground-Based Lidar Observations in Pulau Pinang, Malaysia in 2014. Remote Sens. 2019, 11, 2660. [Google Scholar] [CrossRef]
- Alfaro-Contreras, R.; Zhang, J.; Reid, J.S.; Christopher, S. A study of 15-year aerosol optical thickness and direct shortwave aerosol radiative effect trends using MODIS, MISR, CALIOP and CERES. Atmos. Chem. Phys. 2017, 17, 13849–13868. [Google Scholar] [CrossRef]
- Pérez, C.; Sicard, M.; Jorba, O.; Comerón, A.; Baldasano, J.M. Summertime re-circulations of air pollutants over the north-eastern Iberian coast observed from systematic EARLINET lidar measurements in Barcelona. Atmos. Environ. 2004, 38, 3983–4000. [Google Scholar] [CrossRef]
- Papayannis, V.; Amiridis, L.; Mona, G.; Tsaknakis, D.; Balis, D.; Bösenberg, J.; Chaikovski, A.; de Tomasi, F.; Grigorov, I.; Mattis, I.; et al. Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000–2002). J. Geophys. Res. Atmos. Am. Geophys. Union 2008, 113. [Google Scholar] [CrossRef]
- Yu, H.; Dickinson, R.E.; Chin, M.; Kaufman, Y.J.; Holben, B.N.; Geogdzhayev, I.V.; Mishchenko, M.I. Annual cycle of global distributions of aerosol optical depth from integration of MODIS retrievals and GOCART model simulations. J. Geophys. Res. 2003, 108, 4128. [Google Scholar] [CrossRef]
- O’Neill, N.T.; Pancrati, O.; Baibakov, K.; Eloranta, E.; Batchelor, R.L.; Freemantle, J.; McArthur, L.J.B.; Strong, K.; Lindenmaier, R. Occurrence of weak, sub-micron, tropospheric aerosol events at high Arctic latitudes. Geophys. Res. Lett. 2008, 35, L14814. [Google Scholar] [CrossRef]
- Loeb, N.G.; Schuster, G.L. An observational study of the relationship between cloud, aerosol and meteorology in broken low-level cloud conditions. J. Geophys. Res. 2008, 113, D14214. [Google Scholar] [CrossRef]
- Ranjan, R.R.; Joshi, H.P.; Iyer, K.N. Spectral Variation of Total Column Aerosol Optical Depth over Rajkot: A Tropical Semi-arid Indian Station. Aerosol Air Qual. Res. 2007, 7, 33–45. [Google Scholar] [CrossRef]
- Reid, J.S.; Lagrosas, N.D.; Jonsson, H.H.; Reid, E.A.; Atwood, S.A.; Boyd, T.J.; Ghate, V.P.; Xian, P.; Posselt, D.J.; Simpas, J.B.; et al. Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study—Part 2: Philippine receptor observations of fine-scale aerosol behavior. Atmos. Chem. Phys. 2016, 16, 14057–14078. [Google Scholar] [CrossRef]
- Campbell, J.R.; Ge, C.; Wang, J.; Welton, E.J.; Bucholtz, A.; Hyer, E.J.; Reid, E.A.; Chew, B.N.; Liew, S.-C.; Salinas, S.; et al. Applying Advanced Ground-Based Remote Sensing in the Southeast Asian Maritime Continent to Characterize Regional Proficiencies in Smoke Transport Modeling. J. Appl. Meteorol. Climatol. 2016, 55. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovic, O.; Smirnov, A.; O’Neil, N.T.; Slutsker, I.; Kinne, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. 1999, 104, 31333–31349. [Google Scholar] [CrossRef]
- Papadimas, C.D.; Hatzianastassiou, N.; Mihalopoulos, N.; Querol, X.; Vardavas, I. Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6-year (2000–2006) MODIS data. J. Geophys. Res. 2008, 113, D11205. [Google Scholar] [CrossRef]
- Di Iorio, T.; di Sarra, A.; Sferlazzo, D.M.; Cacciani, M.; Meloni, D.; Monteleone, F.; Fuà, D.; Fiocco, G. Seasonal evolution of the tropospheric aerosol vertical profile in the central Mediterranean and role of desert dust. J. Geophys. Res. 2009, 114, D02201. [Google Scholar] [CrossRef]
- Cuomo, V.; de Martino, S.; Falanga, M.; Mona, L. Influence of local dust source and stochastic fluctuations on Saharan aerosol index dynamics. Int. J. Mod. Phys. B 2009, 23, 5383–5390. [Google Scholar] [CrossRef]
- De Martino, S.; Falanga, M.; Mona, L. Stochastic resonance mechanism in Aerosol Index dynamics. Phys. Rev. Lett. 2002, 89, 128501. [Google Scholar] [CrossRef] [PubMed]
- Gammaitoni, L.; Hanggi, P.; Jung, P.; Marchesoni, F. Stochastic Resonance. Rev. Mod. Phys. 1998, 70, 223–287. [Google Scholar] [CrossRef]
- Lanzara, E.; Mantegna, R.N.; Spagnolo, B.; Zangara, R. Experimental study of a nonlinear system in the presence of noise: The stochastic resonance. Am. J. Phys. 1997, 65, 341–349. [Google Scholar] [CrossRef]
- Mantegna, R.N.; Spagnolo, B.; Trapanese, M. Linear and nonlinear experimental regimes of stochastic resonance. Phys. Rev. E 2001, 63, 011101. [Google Scholar] [CrossRef]
- Spezia, S.; Curcio, L.; Fiasconaro, A.; Pizzolato, N.; Valenti, D.; Spagnolo, B.; Bue, P.L.; Peri, E.; Colazza, S. Evidence of stochastic resonance in the mating behavior of Nezara viridula. Eur. Phys. J. B 2008, 65, 453–458. [Google Scholar] [CrossRef]
- Ditlevsen, P.D.; Svensmark, H.; Johnsen, S. Contrasting atmospheric and climate dynamics of the last-glacial and Holocene periods. Nature 1996, 379, 810–812. [Google Scholar] [CrossRef]
- Ditlevsen, P.D. Observation of alpha-stable noise induced millennial climate changes from an ice-core record. Geophys. Res. Lett. 1999, 26, 1441–1444. [Google Scholar] [CrossRef]
- Caruso, A.; Gargano, M.E.; Valenti, D.; Fiasconaro, A.; Spagnolo, B. Cyclic Fluctuations, Climatic Changes and Role of Noise in Planktonic Foraminifera in the Mediterranean Sea. Fluct. Noise Lett. 2005, 5, L349–L355. [Google Scholar] [CrossRef]
- Valenti, D.; Tranchina, L.; Brai, M.; Caruso, A.; Cosentino, C.; Spagnolo, B. Environmental metal pollution considered as noise: Effects on the spatial distribution of benthic foraminifera in two coastal marine areas of Sicily (Southern Italy). Ecol. Model. 2008, 213, 449–462. [Google Scholar] [CrossRef]
- Spagnolo, B.; Valenti, D.; Guarcello, C.; Carollo, A.; Adorno, D.P.; Spezia, S.; Pizzolato, N.; di Paola, B. Noise-induced effects in nonlinear relaxation of condensed matter systems. Chaos Solitons Fractals 2015, 81, 412–424. [Google Scholar] [CrossRef]
- Valenti, D.; Magazzù, L.; Caldara, P.; Spagnolo, B. Stabilization of quantum metastable states by dissipation. Phys. Rev. B 2015, 91, 235412. [Google Scholar] [CrossRef]
- Spagnolo, B.; Guarcello, C.; Magazzù, L.; Carollo, A.; Persano Adorno, D.; Valenti, D. Nonlinear Relaxation Phenomena in Metastable Condensed Matter Systems. Entropy 2017, 19, 20. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Peng, Y.; Sun, L. MODIS Collection 6.1 aerosol optical depth products over land and ocean: Validation and comparison. Atmos. Environ. 2019, 201, 428–440. [Google Scholar] [CrossRef]
- Limpert, E.; Werner, A.S.; Abbt, M. Log-normal Distributions across the Sciences: Keys and Clues: On the charms of statistics, and how mechanical models resembling gambling machines offer a link to a handy way to characterize log-normal distributions, which can provide deeper insight into variability and probability—Normal or log-normal: That is the question. BioScience 2001, 51, 341–352. [Google Scholar]
- Li, F.; Ramanathan, V. Winter to summer monsoon variation of aerosol optical depth over the tropical Indian Ocean. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef]
- De Lauro, E.; De Martino, S.; Falanga, M.; Ciaramella, A.; Tagliaferri, R. Complexity of time series associated to dynamical systems inferred from independent component analysis. Phys. Rev. E 2005, 72, 046712. [Google Scholar] [CrossRef]
- Hyvarinen, A.; Karhunen, J.; Oja, E. Independent Component Analysis; Wiley and Sons: New York, NY, USA, 2001. [Google Scholar]
- Ciaramella, A.; De Lauro, E.; Martino, S.; Falanga, M.; Tagliaferri, R. ICA based identification of dynamical systems generating synthetic and real world time series. Soft Comput. 2008, 10, 587–606. [Google Scholar] [CrossRef]
- De Martino, S.; Falanga, M.; Palo, M.; Montalto, M.; Patanè, D. Statistical analysis of the seismicity during the Strombolian crisis of 2007, Italy: Evidence of a precursor in tidal range. J. Geophys. Res. 2010, 116, B09312. [Google Scholar] [CrossRef]
- Capuano, P.; De Lauro, E.; De Martino, S.; Falanga, M.; Petrosino, S. Convolutive independent component analysis for processing massive datasets: A case study at Campi Flegrei (Italy). Nat. Hazards 2017, 86, 417–429. [Google Scholar] [CrossRef]
- Capuano, P.; De Lauro, E.; De Martino, S.; Falanga, M. Detailed investigation of Long-Period activity at Campi Flegrei by Convolutive Independent Component Analysis. Phys. Earth Planet. Int. 2016, 253, 48. [Google Scholar] [CrossRef]
- De Lauro, E.; De Martino, S.; Falanga, M.; Palo, M. Statistical analysis of Stromboli VLP tremor in the band [0.1–0.5] Hz: Some consequences for vibrating structures. Nonlinear Process. Geophys. 2006, 13, 393–400. [Google Scholar] [CrossRef][Green Version]
- De Lauro, E.; Petrosino, S.; Ricco, C.; Aquino, I.; Falanga, M. Medium and long period ground oscillatory pattern inferred by borehole tiltmetric data: New perspectives for the Campi Flegrei caldera crustal dynamics. Earth Planet. Sci. Lett. 2018, 504, 21–29. [Google Scholar] [CrossRef]
- De Lauro, E.; De Martino, S.; Falanga, M.; Riente, M.A. Far-field synoptic wind effects extraction from sea-level oscillations: The Venice lagoon case study. Estuar. Coast. Shelf Sci. 2018, 210, 18–25. [Google Scholar] [CrossRef]
- De Lauro, E.; De Martino, S.; Falanga, M.; Petrosino, S. Fast wavefield decomposition of volcano-tectonic earthquakes into polarized P and S waves by Independent Component Analysis. Tectonophysics 2016, 290, 355–361. [Google Scholar] [CrossRef]
- Cusano, P.; Petrosino, S.; De Lauro, E.; Falanga, M. The whisper of the hydrothermal seismic noise at Ischia Island. J. Volcanol. Geotherm. Res. 2019, 389, 106693-1–106693-10. [Google Scholar] [CrossRef]
- Abarbanel, H.D.I.; Brown, R.; Sidorowich, J.J.; Tsimring, L.S. The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 1993, 65, 1331–1392. [Google Scholar] [CrossRef]
- Gammaitoni, L.; Marchesoni, F.; Menichella-Saetta, E.; Santucci, S. Resonant crossing processes controlled by colored noise. Phys. Rev. Lett. 1993, 71, 3625. [Google Scholar] [CrossRef]
- Zhou, T.; Moss, F.; Jung, P. Escape-time distributions of a periodically modulated bistable system with noise. Phys. Rev. A 1990, 42, 3161. [Google Scholar] [CrossRef]
- Löfstedt, R.; Coppersmith, S.N. Stochastic resonance: Nonperturbative calculation of power spectra and residence-time distributions. Phys. Rev. E 1994, 49, 4821. [Google Scholar] [CrossRef]
- Choi, M.H.; Fox, R.F.; Jung, P. Quantifying stochastic resonance in bistable systems: Response vs residence-time distribution functions. Phys. Rev. E 1998, 57, 6335–6344. [Google Scholar] [CrossRef]
- Giacomelli, G.; Marin, F.; Rabbiosi, I. Stochastic and bona fide resonance: An experimental investigation. Phys. Rev. Lett. 1999, 82, 675–678. [Google Scholar] [CrossRef]
- Wellens, T.; Shatokhin, V.; Buchleitner, A. Stochastic resonance. Rep. Prog. Phys. 2004, 67, 45–105. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falanga, M.; De Lauro, E.; de Martino, S. Stochastic Resonance Observed in Aerosol Optical Depth Time Series. Atmosphere 2020, 11, 502. https://doi.org/10.3390/atmos11050502
Falanga M, De Lauro E, de Martino S. Stochastic Resonance Observed in Aerosol Optical Depth Time Series. Atmosphere. 2020; 11(5):502. https://doi.org/10.3390/atmos11050502
Chicago/Turabian StyleFalanga, Mariarosaria, Enza De Lauro, and Salvatore de Martino. 2020. "Stochastic Resonance Observed in Aerosol Optical Depth Time Series" Atmosphere 11, no. 5: 502. https://doi.org/10.3390/atmos11050502
APA StyleFalanga, M., De Lauro, E., & de Martino, S. (2020). Stochastic Resonance Observed in Aerosol Optical Depth Time Series. Atmosphere, 11(5), 502. https://doi.org/10.3390/atmos11050502