Stochastic Resonance Observed in Aerosol Optical Depth Time Series
Abstract
:1. Introduction
2. Experiments
3. Results
3.1. Linear and Nonlinear Analysis
3.2. AOD Residence Time Distribution and Modeling
3.3. Stochastic Resonance Modeling
4. Discussion and Conclusions
- (1)
- AOD is made of a wide band spectrum in which a peak characterized by an annual periodicity emerges retaining most of the information. A non-negligible contribution at very high frequency of the order of a few days is also present.
- (2)
- ICA basically decomposes AOD into two main and independent signals (time components), IC1 (peaked at about 1 year) and IC2 (peaked at about 2–3 days). The first extracted signal component IC1 is the most energetic.
- (3)
- The residence time distribution is made of local maxima over an exponential behavior. The two successive peaks are located at about 200 and 600 days.
- (4)
- FNN indicates that there is no convergence of the algorithm up to a dimension equal to 10, showing no high dimensional deterministic system is driving the dynamics.
Author Contributions
Conflicts of Interest
References
- Lolli, S.; Khor, W.Y.; Matjafri, M.Z.; Lim, H.S. Monsoon Season Quantitative Assessment of Biomass Burning Clear-Sky Aerosol Radiative Effect at Surface by Ground-Based Lidar Observations in Pulau Pinang, Malaysia in 2014. Remote Sens. 2019, 11, 2660. [Google Scholar] [CrossRef] [Green Version]
- Alfaro-Contreras, R.; Zhang, J.; Reid, J.S.; Christopher, S. A study of 15-year aerosol optical thickness and direct shortwave aerosol radiative effect trends using MODIS, MISR, CALIOP and CERES. Atmos. Chem. Phys. 2017, 17, 13849–13868. [Google Scholar] [CrossRef] [Green Version]
- Pérez, C.; Sicard, M.; Jorba, O.; Comerón, A.; Baldasano, J.M. Summertime re-circulations of air pollutants over the north-eastern Iberian coast observed from systematic EARLINET lidar measurements in Barcelona. Atmos. Environ. 2004, 38, 3983–4000. [Google Scholar] [CrossRef]
- Papayannis, V.; Amiridis, L.; Mona, G.; Tsaknakis, D.; Balis, D.; Bösenberg, J.; Chaikovski, A.; de Tomasi, F.; Grigorov, I.; Mattis, I.; et al. Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000–2002). J. Geophys. Res. Atmos. Am. Geophys. Union 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Dickinson, R.E.; Chin, M.; Kaufman, Y.J.; Holben, B.N.; Geogdzhayev, I.V.; Mishchenko, M.I. Annual cycle of global distributions of aerosol optical depth from integration of MODIS retrievals and GOCART model simulations. J. Geophys. Res. 2003, 108, 4128. [Google Scholar] [CrossRef]
- O’Neill, N.T.; Pancrati, O.; Baibakov, K.; Eloranta, E.; Batchelor, R.L.; Freemantle, J.; McArthur, L.J.B.; Strong, K.; Lindenmaier, R. Occurrence of weak, sub-micron, tropospheric aerosol events at high Arctic latitudes. Geophys. Res. Lett. 2008, 35, L14814. [Google Scholar] [CrossRef] [Green Version]
- Loeb, N.G.; Schuster, G.L. An observational study of the relationship between cloud, aerosol and meteorology in broken low-level cloud conditions. J. Geophys. Res. 2008, 113, D14214. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, R.R.; Joshi, H.P.; Iyer, K.N. Spectral Variation of Total Column Aerosol Optical Depth over Rajkot: A Tropical Semi-arid Indian Station. Aerosol Air Qual. Res. 2007, 7, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Reid, J.S.; Lagrosas, N.D.; Jonsson, H.H.; Reid, E.A.; Atwood, S.A.; Boyd, T.J.; Ghate, V.P.; Xian, P.; Posselt, D.J.; Simpas, J.B.; et al. Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study—Part 2: Philippine receptor observations of fine-scale aerosol behavior. Atmos. Chem. Phys. 2016, 16, 14057–14078. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.R.; Ge, C.; Wang, J.; Welton, E.J.; Bucholtz, A.; Hyer, E.J.; Reid, E.A.; Chew, B.N.; Liew, S.-C.; Salinas, S.; et al. Applying Advanced Ground-Based Remote Sensing in the Southeast Asian Maritime Continent to Characterize Regional Proficiencies in Smoke Transport Modeling. J. Appl. Meteorol. Climatol. 2016, 55. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovic, O.; Smirnov, A.; O’Neil, N.T.; Slutsker, I.; Kinne, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. 1999, 104, 31333–31349. [Google Scholar] [CrossRef]
- Papadimas, C.D.; Hatzianastassiou, N.; Mihalopoulos, N.; Querol, X.; Vardavas, I. Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6-year (2000–2006) MODIS data. J. Geophys. Res. 2008, 113, D11205. [Google Scholar] [CrossRef]
- Di Iorio, T.; di Sarra, A.; Sferlazzo, D.M.; Cacciani, M.; Meloni, D.; Monteleone, F.; Fuà, D.; Fiocco, G. Seasonal evolution of the tropospheric aerosol vertical profile in the central Mediterranean and role of desert dust. J. Geophys. Res. 2009, 114, D02201. [Google Scholar] [CrossRef] [Green Version]
- Cuomo, V.; de Martino, S.; Falanga, M.; Mona, L. Influence of local dust source and stochastic fluctuations on Saharan aerosol index dynamics. Int. J. Mod. Phys. B 2009, 23, 5383–5390. [Google Scholar] [CrossRef]
- De Martino, S.; Falanga, M.; Mona, L. Stochastic resonance mechanism in Aerosol Index dynamics. Phys. Rev. Lett. 2002, 89, 128501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gammaitoni, L.; Hanggi, P.; Jung, P.; Marchesoni, F. Stochastic Resonance. Rev. Mod. Phys. 1998, 70, 223–287. [Google Scholar] [CrossRef]
- Lanzara, E.; Mantegna, R.N.; Spagnolo, B.; Zangara, R. Experimental study of a nonlinear system in the presence of noise: The stochastic resonance. Am. J. Phys. 1997, 65, 341–349. [Google Scholar] [CrossRef]
- Mantegna, R.N.; Spagnolo, B.; Trapanese, M. Linear and nonlinear experimental regimes of stochastic resonance. Phys. Rev. E 2001, 63, 011101. [Google Scholar] [CrossRef] [Green Version]
- Spezia, S.; Curcio, L.; Fiasconaro, A.; Pizzolato, N.; Valenti, D.; Spagnolo, B.; Bue, P.L.; Peri, E.; Colazza, S. Evidence of stochastic resonance in the mating behavior of Nezara viridula. Eur. Phys. J. B 2008, 65, 453–458. [Google Scholar] [CrossRef]
- Ditlevsen, P.D.; Svensmark, H.; Johnsen, S. Contrasting atmospheric and climate dynamics of the last-glacial and Holocene periods. Nature 1996, 379, 810–812. [Google Scholar] [CrossRef]
- Ditlevsen, P.D. Observation of alpha-stable noise induced millennial climate changes from an ice-core record. Geophys. Res. Lett. 1999, 26, 1441–1444. [Google Scholar] [CrossRef] [Green Version]
- Caruso, A.; Gargano, M.E.; Valenti, D.; Fiasconaro, A.; Spagnolo, B. Cyclic Fluctuations, Climatic Changes and Role of Noise in Planktonic Foraminifera in the Mediterranean Sea. Fluct. Noise Lett. 2005, 5, L349–L355. [Google Scholar] [CrossRef] [Green Version]
- Valenti, D.; Tranchina, L.; Brai, M.; Caruso, A.; Cosentino, C.; Spagnolo, B. Environmental metal pollution considered as noise: Effects on the spatial distribution of benthic foraminifera in two coastal marine areas of Sicily (Southern Italy). Ecol. Model. 2008, 213, 449–462. [Google Scholar] [CrossRef] [Green Version]
- Spagnolo, B.; Valenti, D.; Guarcello, C.; Carollo, A.; Adorno, D.P.; Spezia, S.; Pizzolato, N.; di Paola, B. Noise-induced effects in nonlinear relaxation of condensed matter systems. Chaos Solitons Fractals 2015, 81, 412–424. [Google Scholar] [CrossRef]
- Valenti, D.; Magazzù, L.; Caldara, P.; Spagnolo, B. Stabilization of quantum metastable states by dissipation. Phys. Rev. B 2015, 91, 235412. [Google Scholar] [CrossRef] [Green Version]
- Spagnolo, B.; Guarcello, C.; Magazzù, L.; Carollo, A.; Persano Adorno, D.; Valenti, D. Nonlinear Relaxation Phenomena in Metastable Condensed Matter Systems. Entropy 2017, 19, 20. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Li, Z.; Peng, Y.; Sun, L. MODIS Collection 6.1 aerosol optical depth products over land and ocean: Validation and comparison. Atmos. Environ. 2019, 201, 428–440. [Google Scholar] [CrossRef]
- Limpert, E.; Werner, A.S.; Abbt, M. Log-normal Distributions across the Sciences: Keys and Clues: On the charms of statistics, and how mechanical models resembling gambling machines offer a link to a handy way to characterize log-normal distributions, which can provide deeper insight into variability and probability—Normal or log-normal: That is the question. BioScience 2001, 51, 341–352. [Google Scholar]
- Li, F.; Ramanathan, V. Winter to summer monsoon variation of aerosol optical depth over the tropical Indian Ocean. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef]
- De Lauro, E.; De Martino, S.; Falanga, M.; Ciaramella, A.; Tagliaferri, R. Complexity of time series associated to dynamical systems inferred from independent component analysis. Phys. Rev. E 2005, 72, 046712. [Google Scholar] [CrossRef]
- Hyvarinen, A.; Karhunen, J.; Oja, E. Independent Component Analysis; Wiley and Sons: New York, NY, USA, 2001. [Google Scholar]
- Ciaramella, A.; De Lauro, E.; Martino, S.; Falanga, M.; Tagliaferri, R. ICA based identification of dynamical systems generating synthetic and real world time series. Soft Comput. 2008, 10, 587–606. [Google Scholar] [CrossRef]
- De Martino, S.; Falanga, M.; Palo, M.; Montalto, M.; Patanè, D. Statistical analysis of the seismicity during the Strombolian crisis of 2007, Italy: Evidence of a precursor in tidal range. J. Geophys. Res. 2010, 116, B09312. [Google Scholar] [CrossRef]
- Capuano, P.; De Lauro, E.; De Martino, S.; Falanga, M.; Petrosino, S. Convolutive independent component analysis for processing massive datasets: A case study at Campi Flegrei (Italy). Nat. Hazards 2017, 86, 417–429. [Google Scholar] [CrossRef]
- Capuano, P.; De Lauro, E.; De Martino, S.; Falanga, M. Detailed investigation of Long-Period activity at Campi Flegrei by Convolutive Independent Component Analysis. Phys. Earth Planet. Int. 2016, 253, 48. [Google Scholar] [CrossRef]
- De Lauro, E.; De Martino, S.; Falanga, M.; Palo, M. Statistical analysis of Stromboli VLP tremor in the band [0.1–0.5] Hz: Some consequences for vibrating structures. Nonlinear Process. Geophys. 2006, 13, 393–400. [Google Scholar] [CrossRef] [Green Version]
- De Lauro, E.; Petrosino, S.; Ricco, C.; Aquino, I.; Falanga, M. Medium and long period ground oscillatory pattern inferred by borehole tiltmetric data: New perspectives for the Campi Flegrei caldera crustal dynamics. Earth Planet. Sci. Lett. 2018, 504, 21–29. [Google Scholar] [CrossRef]
- De Lauro, E.; De Martino, S.; Falanga, M.; Riente, M.A. Far-field synoptic wind effects extraction from sea-level oscillations: The Venice lagoon case study. Estuar. Coast. Shelf Sci. 2018, 210, 18–25. [Google Scholar] [CrossRef]
- De Lauro, E.; De Martino, S.; Falanga, M.; Petrosino, S. Fast wavefield decomposition of volcano-tectonic earthquakes into polarized P and S waves by Independent Component Analysis. Tectonophysics 2016, 290, 355–361. [Google Scholar] [CrossRef]
- Cusano, P.; Petrosino, S.; De Lauro, E.; Falanga, M. The whisper of the hydrothermal seismic noise at Ischia Island. J. Volcanol. Geotherm. Res. 2019, 389, 106693-1–106693-10. [Google Scholar] [CrossRef]
- Abarbanel, H.D.I.; Brown, R.; Sidorowich, J.J.; Tsimring, L.S. The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 1993, 65, 1331–1392. [Google Scholar] [CrossRef] [Green Version]
- Gammaitoni, L.; Marchesoni, F.; Menichella-Saetta, E.; Santucci, S. Resonant crossing processes controlled by colored noise. Phys. Rev. Lett. 1993, 71, 3625. [Google Scholar] [CrossRef]
- Zhou, T.; Moss, F.; Jung, P. Escape-time distributions of a periodically modulated bistable system with noise. Phys. Rev. A 1990, 42, 3161. [Google Scholar] [CrossRef]
- Löfstedt, R.; Coppersmith, S.N. Stochastic resonance: Nonperturbative calculation of power spectra and residence-time distributions. Phys. Rev. E 1994, 49, 4821. [Google Scholar] [CrossRef]
- Choi, M.H.; Fox, R.F.; Jung, P. Quantifying stochastic resonance in bistable systems: Response vs residence-time distribution functions. Phys. Rev. E 1998, 57, 6335–6344. [Google Scholar] [CrossRef]
- Giacomelli, G.; Marin, F.; Rabbiosi, I. Stochastic and bona fide resonance: An experimental investigation. Phys. Rev. Lett. 1999, 82, 675–678. [Google Scholar] [CrossRef]
- Wellens, T.; Shatokhin, V.; Buchleitner, A. Stochastic resonance. Rep. Prog. Phys. 2004, 67, 45–105. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falanga, M.; De Lauro, E.; de Martino, S. Stochastic Resonance Observed in Aerosol Optical Depth Time Series. Atmosphere 2020, 11, 502. https://doi.org/10.3390/atmos11050502
Falanga M, De Lauro E, de Martino S. Stochastic Resonance Observed in Aerosol Optical Depth Time Series. Atmosphere. 2020; 11(5):502. https://doi.org/10.3390/atmos11050502
Chicago/Turabian StyleFalanga, Mariarosaria, Enza De Lauro, and Salvatore de Martino. 2020. "Stochastic Resonance Observed in Aerosol Optical Depth Time Series" Atmosphere 11, no. 5: 502. https://doi.org/10.3390/atmos11050502
APA StyleFalanga, M., De Lauro, E., & de Martino, S. (2020). Stochastic Resonance Observed in Aerosol Optical Depth Time Series. Atmosphere, 11(5), 502. https://doi.org/10.3390/atmos11050502