Self Similar Shocks in Atmospheric Mass Loss Due to Planetary Collisions
Abstract
:1. Introduction
2. Core Shock
2.1. Impulsive Piston Problem
2.2. Self Similar Equations
2.3. Boundary Conditions
2.4. Comparison with Experiments
2.5. Asymptotic Case
2.6. Analytic Case
3. Atmospheric Mass Loss
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Armitage, P.J. A Brief Overview of Planet Formation; Springer: Berlin, Germany, 2018; p. 135. [Google Scholar] [CrossRef] [Green Version]
- Agnor, C.B.; Canup, R.M.; Levison, H.F. On the Character and Consequences of Large Impacts in the Late Stage of Terrestrial Planet Formation. Icarus 1999, 142, 219–237. [Google Scholar] [CrossRef]
- Chambers, J.E. Making More Terrestrial Planets. Icarus 2001, 152, 205–224. [Google Scholar] [CrossRef]
- Chambers, J.; Wetherill, G.; Boss, A. The Stability of Multi-Planet Systems. Icarus 1996, 119, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.L.; Lin, D.N.C.; Sun, Y.S. Post-Oligarchic Evolution of Protoplanetary Embryos and the Stability of Planetary Systems. Astrophys. J. 2007, 666, 423–435. [Google Scholar] [CrossRef] [Green Version]
- Obertas, A.; Van Laerhoven, C.; Tamayo, D. The stability of tightly-packed, evenly-spaced systems of Earth-mass planets orbiting a Sun-like star. Icarus 2017, 293, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Rice, D.R.; Rasio, F.A.; Steffen, J.H. Survival of non-coplanar, closely-packed planetary systems after a close encounter. MNRAS 2018, 481, 2205–2212. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Sigurdsson, S. Electromagnetic Signals from Planetary Collisions. Astrophys. J. 2003, 596, L95–L98. [Google Scholar] [CrossRef]
- Schlichting, H.E.; Mukhopadhyay, S. Atmosphere Impact Losses. Space Sci. Rev. 2018, 214, 34. [Google Scholar] [CrossRef] [Green Version]
- Thompson, M.A.; Weinberger, A.J.; Keller, L.; Arnold, J.A.; Stark, C. Studying the Evolution of Warm Dust Encircling BD +20 307 Using SOFIA. Astrophys. J. 2019, 875, 45. [Google Scholar] [CrossRef]
- Bonomo, A.S.; Zeng, L.; Damasso, M.; Leinhardt, Z.M.; Justesen, A.B.; Lopez, E.; Lund, M.N.; Malavolta, L.; Aguirre, V.S.; Buchhave, L.A.; et al. A giant impact as the likely origin of different twins in the Kepler-107 exoplanet system. Nat. Astron. 2019, 3, 416–423. [Google Scholar] [CrossRef]
- Stewart, S.T.; Leinhardt, Z.M. Collisions between Gravity-Dominated Bodies: 2. The Diversity of Impact Outcomes during the End Stage of Planet Formation. Astrophys. J. 2011, 745, 79. [Google Scholar] [CrossRef]
- Liu, S.F.; Hori, Y.; Lin, D.N.; Asphaug, E. Giant impact: an efficient mechanism for the devolatilization of super-earths. Astrophys. J. 2015, 812, 164. [Google Scholar] [CrossRef]
- Schlichting, H.; Sari, R.; Yalinewich, A. Atmospheric mass loss during planet formation: The importance of planetesimal impacts. Icarus 2015, 247, 81–94. [Google Scholar] [CrossRef] [Green Version]
- Yalinewich, A.; Schlichting, H.E. Atmospheric Mass Loss from High Velocity Giant Impacts. Mon. Not. R. Astron. Soc. 2018, 486, 2780–2789. [Google Scholar] [CrossRef] [Green Version]
- Potter, R.; Collins, G.; Kiefer, W.; McGovern, P.; Kring, D. Constraining the size of the South Pole-Aitken basin impact. Icarus 2012, 220, 730–743. [Google Scholar] [CrossRef]
- Monteux, J.; Arkani-Hamed, J. Shock wave propagation in layered planetary interiors: Revisited. Icarus 2019, 331, 238–256. [Google Scholar] [CrossRef] [Green Version]
- Holsapple, K.A.; Housen, K.R. Momentum transfer in asteroid impacts. I. Theory and scaling. Icarus 2012, 221, 875–887. [Google Scholar] [CrossRef]
- Mazzariol, L.M.; Alves, M. Experimental verification of similarity laws for impacted structures made of different materials. Int. J. Impact Eng. 2019, 133, 103364. [Google Scholar] [CrossRef]
- Holsapple, K.A. The scaling of impact phenomena. Int. J. Impact Eng. 1987, 5, 343–355. [Google Scholar] [CrossRef]
- Barenblatt, G.I. Scaling, Self-similarity, and Intermediate Asymptotics; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar] [CrossRef]
- Sedov, L.I. Propagation of strong blast waves. Prikl. Mat. Mekh 1946, 10, 241–250. [Google Scholar]
- Taylor, G.I. The formation of a blast wave by a very intense explosion I. Theoretical discussion. Proc. R. Soc. Lond. A 1950, 201, 159–174. [Google Scholar]
- Waxman, E.; Shvarts, D. Second-type self-similar solutions to the strong explosion problem. Phys. Fluids A Fluid Dyn. 1993, 5, 1035–1046. [Google Scholar] [CrossRef]
- Adamskii, V.B.; Popov, N.A. The motion of a gas under the action of a pressure on a piston, varying according to a power law. J. Appl. Math. Mech. 1959, 23, 793–806. [Google Scholar] [CrossRef]
- Zel’dovich, Y.B.; Raizer, Y.P.; Zel’dovich, Y.B.; Raizer, Y.P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena; Academic Press: New York, NY, USA, 1967. [Google Scholar]
- Hafele, W. Zur analytischen Behandlung ebener, starker, instationärer Stoßwellen. Z. Nat. Sect. A J. Phys. Sci. 1955, 10, 1006–1016. [Google Scholar] [CrossRef] [Green Version]
- Hoerner, S.V. Lösungen der hydrodynamischen Gleichungen mit linearem Verlauf der Geschindigkeit. Z. Nat. Sect. A J. Phys. Sci. 1955, 10, 687–692. [Google Scholar] [CrossRef]
- Adamskii, V.B. Integration of a system of autosimulating equations for the problem of a short duration shock in a cold gas. Sov. Phys. Acoust. 1956, 2, 3–9. [Google Scholar]
- Zhukov, A.I.; Kazhdan, Y.M. The motion of a gas under the action of a short-lived impulse. Akust. Zhur 1956, 2, 352–357. [Google Scholar]
- Zeldovich, Y.B. The motion of a gas under the action of a short lived pressure. Akust. Zhur 1956, 2, 28–38. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics; Pergamon Press: Oxford, UK, 1987. [Google Scholar] [CrossRef]
- McCoy, C.A.; Gregor, M.C.; Polsin, D.N.; Fratanduono, D.E.; Celliers, P.M.; Boehly, T.R.; Meyerhofer, D.D. Shock-wave equation-of-state measurements in fused silica up to 1600 GPa. J. Appl. Phys. 2016, 119, 215901. [Google Scholar] [CrossRef] [Green Version]
- Dattelbaum, D.; Coe, J. Shock-Driven Decomposition of Polymers and Polymeric Foams. Polymers 2019, 11, 493. [Google Scholar] [CrossRef] [Green Version]
- Holsapple, K.A.; Holsapple, A.K. The Scaling of Impact Processes in Planetary Sciences. Annu. Rev. Earth Planet. Sci. 1993, 21, 333–373. [Google Scholar] [CrossRef]
- Housen, K.R.; Schmidt, R.M.; Holsapple, K.A. Crater ejecta scaling laws: Fundamental forms based on dimensional analysis. J. Geophys. Res. 1983, 88, 2485. [Google Scholar] [CrossRef]
- Gojani, A.B.; Ohtani, K.; Takayama, K.; Hosseini, S.H.R. Shock Hugoniot and equations of states of water, castor oil, and aqueous solutions of sodium chloride, sucrose and gelatin. Shock Waves 2016, 26, 63–68. [Google Scholar] [CrossRef]
- Yalinewich, A.; Steinberg, E.; Sari, R. Rich: Open-source hydrodynamic simulation on a moving Voronoi mesh. Astrophys. J. Suppl. Ser. 2015, 216. [Google Scholar] [CrossRef] [Green Version]
- Meurer, A.; Smith, C.P.; Paprocki, M.; Čertík, O.; Kirpichev, S.B.; Rocklin, M.; Kumar, A.; Ivanov, S.; Moore, J.K.; Singh, S.; et al. SymPy: symbolic computing in Python. PeerJ Comput. Sci. 2017, 3, e103. [Google Scholar] [CrossRef] [Green Version]
- Oliphant, T.E. A Guide to NumPy; Trelgol Publishing: Scotts Valley, CA, USA, 2006; Volume 1. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yalinewich, A.; Remorov, A. Self Similar Shocks in Atmospheric Mass Loss Due to Planetary Collisions. Atmosphere 2020, 11, 445. https://doi.org/10.3390/atmos11050445
Yalinewich A, Remorov A. Self Similar Shocks in Atmospheric Mass Loss Due to Planetary Collisions. Atmosphere. 2020; 11(5):445. https://doi.org/10.3390/atmos11050445
Chicago/Turabian StyleYalinewich, Almog, and Andrey Remorov. 2020. "Self Similar Shocks in Atmospheric Mass Loss Due to Planetary Collisions" Atmosphere 11, no. 5: 445. https://doi.org/10.3390/atmos11050445
APA StyleYalinewich, A., & Remorov, A. (2020). Self Similar Shocks in Atmospheric Mass Loss Due to Planetary Collisions. Atmosphere, 11(5), 445. https://doi.org/10.3390/atmos11050445