NOx Emission Reduction and Recovery during COVID-19 in East China
Abstract
:1. Introduction
2. Methods
2.1. KNMI TROPOMI NO2 Data
2.2. WRF-GC Model
2.3. Top-Down NOx Emission Estimate
3. Results
3.1. NO2TROPOMI Changes
3.2. Top-Down NOx Emission Changes
3.3. Timeseries in Selected Regions
3.3.1. East China: Recovering
3.3.2. Wuhan of Hubei: No Sign of Recovering
3.3.3. Hubei and Hunan: Possibly Recovered
3.3.4. Guangdong and Shandong: Recovering Slowly
3.3.5. Zhejiang: Almost Recovered
3.3.6. Chongqing: No Significant Changes
4. Discussion
4.1. Chinese New Year
4.2. Economic Downturn
4.3. Relative Changes of Top-Down NOx Emissions and Tropospheric NO2 VCDs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Region | Bottom-up Emission (Gg/Month) | |||||
---|---|---|---|---|---|---|
P1 | P2 | P3 | P2vP1 1 | P3vP2 | P3vP1 | |
East China | 1250.6 | 1232 | 1219 | −1% * | −1% * | −3% * |
Shandong | 123 | 124 | 126.8 | 1% * | 2% * | 3% * |
Guangdong | 46.7 | 46.1 | 47.1 | −1% * | 2% | 1% |
Hubei | 45.3 | 44.1 | 43.6 | −3% * | −1% | −4% * |
Zhejiang | 44.2 | 43.1 | 43.5 | −3% * | 1% | −2% |
Hunan | 39.9 | 38 | 36.7 | −5% * | −3% * | −8% * |
Chongqing | 22.9 | 21.8 | 20.9 | −5% * | −4% * | −9% * |
Wuhan | 8.3 | 8.2 | 8.3 | −1% * | 1% | 0% |
References
- The World Health Organization. Coronavirus Disease (COVID-19) Pandemic. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 5 April 2020).
- Wikipedia. 2019–20 Coronavirus Pandemic in Mainland China. Available online: https://en.wikipedia.org/wiki/2019%E2%80%9320_coronavirus_pandemic_in_mainland_China (accessed on 5 April 2020).
- Pratitya. COVID-19 Timeline. Available online: https://github.com/Pratitya/COVID-19-timeline/blob/master/%E6%97%B6%E9%97%B4%E7%BA%BFTIMELINE.md (accessed on 20 April 2020).
- Caixin News. Back-to-Work Schedules of 31 Provinces. Available online: http://www.xinhuanet.com/politics/2020-02/02/c_1125520608.htm (accessed on 5 April 2020).
- Hubei COVID-19 Headquarter. Hubei Back-to-Work Notice. Available online: https://www.hubei.gov.cn/zhuanti/2020/gzxxgzbd/zxtb/202003/t20200311_2178823.shtml (accessed on 7 April 2020).
- Li, M.; Zhang, Q.; Kurokawa, J.I.; Woo, J.H.; He, K.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D.G.; Carmichael, G.R.; et al. MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 2017, 17, 935–963. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Wang, Y.; Smeltzer, C.; Qu, H.; Koshak, W.; Boersma, K.F. Comparing OMI-based and EPA AQS in situ NO2 trends: Towards understanding surface NOx emission changes. Atmos. Meas. Tech. 2018, 11, 3955–3967. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.V.; Jacob, D.J.; Chance, K.; Kurosu, T.P.; Palmer, P.I.; Evans, M.J. Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns. J. Geophys. Res. Atmos. 2003, 108, D17. [Google Scholar] [CrossRef] [Green Version]
- Streets, D.G.; Bond, T.C.; Carmichael, G.R.; Fernandes, S.D.; Fu, Q.; He, D.; Klimont, Z.; Nelson, S.M.; Tsai, N.Y.; Wang, M.Q.; et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res. Atmos. 2003, 108, 8809. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Y. Assimilated inversion of NOx emissions over east Asia using OMI NO2 column measurements. Geophys. Res. Lett. 2009, 36, L06805. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.T.; McElroy, M.B. Detection from space of a reduction in anthropogenic emissions of nitrogen oxides during the Chinese economic downturn. Atmos. Chem. Phys. 2011, 11, 8171–8188. [Google Scholar] [CrossRef] [Green Version]
- Gu, D.S.; Wang, Y.H.; Smeltzer, C.; Liu, Z. Reduction in NOx emission trends over China: Regional and seasonal variations. Environ. Sci. Technol. 2013, 47, 12912–12919. [Google Scholar] [CrossRef]
- Lin, J.-T.; Pan, D.; Zhang, R.-X. Trend and interannual variability of Chinese air pollution since 2000 in association with socioeconomic development: A brief overview. Atmos. Ocean. Sci. Lett. 2013, 6, 84–89. [Google Scholar] [CrossRef]
- Gu, D.; Wang, Y.; Smeltzer, C.; Boersma, K.F. Anthropogenic emissions of NOx over China: Reconciling the difference of inverse modeling results using GOME-2 and OMI measurements. J. Geophys. Res. Atmos. 2014, 119, 2014JD021644. [Google Scholar] [CrossRef]
- Gu, D.; Wang, Y.; Yin, R.; Zhang, Y.; Smeltzer, C. Inverse modelling of NOx emissions over eastern China: Uncertainties due to chemical non-linearity. Atmos. Meas. Tech. 2016, 9, 5193–5201. [Google Scholar] [CrossRef] [Green Version]
- Han, K.M. Temporal analysis of OMI-observed tropospheric NO2 columns over East Asia during 2006–2015. Atmosphere 2019, 10, 658. [Google Scholar] [CrossRef] [Green Version]
- Kong, H.; Lin, J.; Zhang, R.; Liu, M.; Weng, H.; Ni, R.; Chen, L.; Wang, J.; Yan, Y.; Zhang, Q. High-resolution (0.05° × 0.05°) NOx emissions in the Yangtze River Delta inferred from OMI. Atmos. Chem. Phys. 2019, 19, 12835–12856. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Gautam, R.; Zavala-Araiza, D.; Jacob, D.J.; Zhang, R.; Zhu, L.; Sheng, J.-X.; Scarpelli, T. Satellite-observed changes in Mexico’s offshore gas flaring activity linked to oil/gas regulations. Geophys. Res. Lett. 2019, 46, 1879–1888. [Google Scholar] [CrossRef] [Green Version]
- Patel, K.; Stevens, J.; European Space Agency; NASA Aura team; NASA SPoRT team. Airborne Nitrogen Dioxide Plummets over China. Available online: https://earthobservatory.nasa.gov/images/146362/airborne-nitrogen-dioxide-plummets-over-china (accessed on 7 April 2020).
- Zhang, R.; Wang, Y.; He, Q.; Chen, L.; Zhang, Y.; Qu, H.; Smeltzer, C.; Li, J.; Alvarado, L.M.A.; Vrekoussis, M.; et al. Enhanced trans-Himalaya pollution transport to the Tibetan Plateau by cut-off low systems. Atmos. Chem. Phys. 2017, 17, 3083–3095. [Google Scholar] [CrossRef] [Green Version]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA sentinel-5 precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Van Geffen, J.; Eskes, H.J.; Boersma, K.F.; Maasakkers, J.D.; Veefkind, J.P. TROPOMI ATBD of the Total and Tropospheric NO2 Data Products; KNMI: De Bilt, The Netherlands, 2019. [Google Scholar]
- Schenkeveld, V.M.E.; Jaross, G.; Marchenko, S.; Haffner, D.; Kleipool, Q.L.; Rozemeijer, N.C.; Veefkind, J.P.; Levelt, P.F. In-flight performance of the ozone monitoring instrument. Atmos. Meas. Tech. 2017, 10, 1957–1986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Geffen, J.; Boersma, K.F.; Eskes, H.; Sneep, M.; ter Linden, M.; Zara, M.; Veefkind, J.P. S5P TROPOMI NO2 slant column retrieval: method, stability, uncertainties and comparisons with OMI. Atmos. Meas. Tech. 2020, 13, 1315–1335. [Google Scholar] [CrossRef] [Green Version]
- Boersma, K.F.; Eskes, H.J.; Brinksma, E.J. Error analysis for tropospheric NO2 retrieval from space. J. Geophys. Res. Atmos. 2004, 109, D04311. [Google Scholar] [CrossRef]
- Boersma, K.F.; Eskes, H.J.; Richter, A.; De Smedt, I.; Lorente, A.; Beirle, S.; van Geffen, J.H.G.M.; Zara, M.; Peters, E.; Van Roozendael, M.; et al. Improving algorithms and uncertainty estimates for satellite NO2 retrievals: Results from the quality assurance for the essential climate variables (QA4ECV) project. Atmos. Meas. Tech. 2018, 11, 6651–6678. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Lin, J.; Kong, H.; Boersma, K.F.; Eskes, H.; Kanaya, Y.; He, Q.; Tian, X.; Qin, K.; Xie, P.; et al. A new TROPOMI product for tropospheric NO2 columns over East Asia with explicit aerosol corrections. Atmos. Meas. Tech. Discuss. 2020, 2020, 1–22. [Google Scholar] [CrossRef]
- Lin, J.T.; Liu, M.Y.; Xin, J.Y.; Boersma, K.F.; Spurr, R.; Martin, R.; Zhang, Q. Influence of aerosols and surface reflectance on satellite NO2 retrieval: Seasonal and spatial characteristics and implications for NOx emission constraints. Atmos. Chem. Phys. 2015, 15, 11217–11241. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Feng, X.; Fu, T.M.; Tian, H.; Ma, Y.; Zhang, L.; Jacob, D.J.; Yantosca, R.M.; Sulprizio, M.P.; Lundgren, E.W.; et al. WRF-GC: Online coupling of WRF and GEOS-Chem for regional atmospheric chemistry modeling, Part 1: Description of the one-way model (v1.0). Geosci. Model Dev. Discuss. 2020, 2020, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.J.; Powers, G. A Description of the Advanced Research WRF; Version 3 (No. NCAR/TN-475+STR); University Corporation for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar] [CrossRef]
- Bey, I.; Jacob, D.J.; Yantosca, R.M.; Logan, J.A.; Field, B.D.; Fiore, A.M.; Li, Q.B.; Liu, H.G.Y.; Mickley, L.J.; Schultz, M.G. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J. Geophys. Res. Atmos. 2001, 106, 23073–23095. [Google Scholar] [CrossRef]
- National Centers for Environmental Prediction; National Weather Service; National Oceanic and Atmospheric Administration; United States Department of Commerce. NCEP Global Forecast System (GFS) Analyses and Forecasts. In Research Data Archive at the National Center for Atmospheric Research; Computational and Information Systems Laboratory: Boulder, CO, USA, 2007. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Streets, D.G.; He, K.B.; Cheng, Y.F.; Emmons, L.K.; Huo, H.; Kang, S.C.; Lu, Z.; Shao, M.; et al. Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms. Atmos. Chem. Phys. 2014, 14, 5617–5638. [Google Scholar] [CrossRef] [Green Version]
- Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef] [Green Version]
- Hudman, R.C.; Moore, N.E.; Mebust, A.K.; Martin, R.V.; Russell, A.R.; Valin, L.C.; Cohen, R.C. Steps towards a mechanistic model of global soil nitric oxide emissions: Implementation and space based-constraints. Atmos. Chem. Phys. 2012, 12, 7779–7795. [Google Scholar] [CrossRef] [Green Version]
- Kenagy, H.S.; Sparks, T.L.; Ebben, C.J.; Wooldrige, P.J.; Lopez-Hilfiker, F.D.; Lee, B.H.; Thornton, J.A.; McDuffie, E.E.; Fibiger, D.L.; Brown, S.S.; et al. NOx Lifetime and NOy Partitioning During WINTER. J. Geophys. Res. Atmos. 2018, 123, 9813–9827. [Google Scholar] [CrossRef]
- Shah, V.; Jacob, D.J.; Li, K.; Silvern, R.F.; Zhai, S.; Liu, M.; Lin, J.; Zhang, Q. Effect of changing NOx lifetime on the seasonality and long-term trends of satellite-observed tropospheric NO2 columns over China. Atmos. Chem. Phys. 2020, 20, 1483–1495. [Google Scholar] [CrossRef] [Green Version]
- Yeung, K. Coronavirus: Zhejiang Province Orders Relaxation of Excessive Controls to Allow Life to Return to Normal. Available online: https://www.scmp.com/economy/china-economy/article/3049821/coronavirus-chinese-province-orders-relaxation-excessive (accessed on 5 April 2020).
- Wikipedia. Zhenhai District. Available online: https://en.wikipedia.org/wiki/Zhenhai_District (accessed on 5 April 2020).
- He, L.; Cui, L.; Ma, X.; Li, L.; Wei, Y.; Zheng, M. Economic Powerhouse Leads Legislation in Beefing up Private Sector. Available online: http://www.xinhuanet.com/english/2020-01/22/c_138727326.htm (accessed on 20 April 2020).
- National Helath Commission of the People’s Republic of China. Live Data of COVID-19 Cases in China. Available online: https://datanews.caixin.com/interactive/2020/pneumonia-h5/#live-data (accessed on 7 April 2020).
- The World Bank. Exports of Goods and Services (Percentage of GDP). Available online: https://data.worldbank.org/indicator/NE.EXP.GNFS.ZS?locations=CN (accessed on 5 April 2020).
- Wikipedia. Curfews and Lockdowns Related to the 2019–20 Coronavirus Pandemic. Available online: https://en.wikipedia.org/wiki/Curfews_and_lockdowns_related_to_the_2019%E2%80%9320_coronavirus_pandemic (accessed on 20 April 2020).
Region | NO2TROPOMI ± Standard Deviation (1015 Molecules/cm2) | NO2TROPOMI Relative Changes (%) | ||||
---|---|---|---|---|---|---|
P1 | P2 | P3 | P2vP1 1 | P3vP2 | P3vP1 | |
East China | 4.1 ± 1.0 | 2.0 ± 0.4 | 2.3 ± 0.5 | −52% * | 19% * | −43% * |
Shandong | 13.1 ± 5.9 | 3.8 ± 1.1 | 4.8 ± 2.0 | −71% * | 26% | −63% * |
Guangdong | 3.9 ± 0.9 | 2.2 ± 0.6 | 2.7 ± 0.8 | −45% * | 22% | −33% * |
Hubei | 2.5 ± 0.6 | 1.6 ± 0.6 | 2.0 ± 0.7 | −37% * | 25% | −21% |
Zhejiang | 4.2 ± 1.4 | 2.1 ± 1.1 | 2.9 ± 1.0 | −49% * | 38% * | −30% * |
Hunan | 2.7 ± 1.0 | 1.8 ± 0.9 | 2.4 ± 0.9 | −33% | 33% | −11% |
Chongqing | 4.0 ± 1.8 | 2.8 ± 1.3 | 2.7 ± 1.0 | −30% | −5% | −33% * |
Wuhan | 5.1 ± 1.4 | 3.3 ± 1.8 | 3.3 ± 1.1 | −35% * | 0% | −35% * |
Region | Top-Down Emission ± Standard Deviation (Gg/Month) | Relative Changes | ||||
---|---|---|---|---|---|---|
P1 | P2 | P3 | P2vP1 1 | P3vP2 | P3vP1 | |
East China | 1589 ± 449 | 795 ± 236 | 1001 ± 283 | −50% * | 26% * | −37% * |
Shandong | 135 ± 73 | 51 ± 28 | 76 ± 53 | −62% * | 48% | −44% * |
Guangdong | 74 ± 24 | 41 ± 16 | 51 ± 19 | −43% * | 23% | −30% * |
Hubei | 27 ± 10 | 18 ± 8 | 23 ± 8 | −34% * | 32% | −13% |
Zhejiang | 41 ± 17 | 23 ± 16 | 38 ± 22 | −44% * | 67% * | −6% |
Hunan | 38 ± 9 | 25 ± 19 | 46 ± 30 | −34% | 85% * | 22% |
Chongqing | 31 ± 17 | 32 ± 15 | 24 ± 10 | 1% | −24% | −23% |
Wuhan | 4 ± 2 | 2 ± 1 | 3 ± 0 | −41% * | 13% | −33% * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Zhang, Y.; Lin, H.; Feng, X.; Fu, T.-M.; Wang, Y. NOx Emission Reduction and Recovery during COVID-19 in East China. Atmosphere 2020, 11, 433. https://doi.org/10.3390/atmos11040433
Zhang R, Zhang Y, Lin H, Feng X, Fu T-M, Wang Y. NOx Emission Reduction and Recovery during COVID-19 in East China. Atmosphere. 2020; 11(4):433. https://doi.org/10.3390/atmos11040433
Chicago/Turabian StyleZhang, Ruixiong, Yuzhong Zhang, Haipeng Lin, Xu Feng, Tzung-May Fu, and Yuhang Wang. 2020. "NOx Emission Reduction and Recovery during COVID-19 in East China" Atmosphere 11, no. 4: 433. https://doi.org/10.3390/atmos11040433
APA StyleZhang, R., Zhang, Y., Lin, H., Feng, X., Fu, T. -M., & Wang, Y. (2020). NOx Emission Reduction and Recovery during COVID-19 in East China. Atmosphere, 11(4), 433. https://doi.org/10.3390/atmos11040433